Branch data Line data Source code
1 : : /* SPDX-License-Identifier: (BSD-3-Clause OR GPL-2.0)
2 : : *
3 : : * Copyright 2008-2012 Freescale Semiconductor, Inc.
4 : : * Copyright 2019-2022 NXP
5 : : *
6 : : */
7 : :
8 : : #ifndef __FSL_QMAN_H
9 : : #define __FSL_QMAN_H
10 : :
11 : : #include <dpaa_rbtree.h>
12 : : #include <rte_compat.h>
13 : : #include <rte_eventdev.h>
14 : :
15 : : #ifdef __cplusplus
16 : : extern "C" {
17 : : #endif
18 : :
19 : : /* FQ lookups (turn this on for 64bit user-space) */
20 : : #ifdef RTE_ARCH_64
21 : : #define CONFIG_FSL_QMAN_FQ_LOOKUP
22 : : /* if FQ lookups are supported, this controls the number of initialised,
23 : : * s/w-consumed FQs that can be supported at any one time.
24 : : */
25 : : #define CONFIG_FSL_QMAN_FQ_LOOKUP_MAX (32 * 1024)
26 : : #endif
27 : :
28 : : /* Last updated for v00.800 of the BG */
29 : :
30 : : /* Hardware constants */
31 : : #define QM_CHANNEL_SWPORTAL0 0
32 : : #define QMAN_CHANNEL_POOL1 0x21
33 : : #define QMAN_CHANNEL_CAAM 0x80
34 : : #define QMAN_CHANNEL_PME 0xa0
35 : : #define QMAN_CHANNEL_POOL1_REV3 0x401
36 : : #define QMAN_CHANNEL_CAAM_REV3 0x840
37 : : #define QMAN_CHANNEL_PME_REV3 0x860
38 : : extern u16 qm_channel_pool1;
39 : : extern u16 qm_channel_caam;
40 : : extern u16 qm_channel_pme;
41 : : enum qm_dc_portal {
42 : : qm_dc_portal_fman0 = 0,
43 : : qm_dc_portal_fman1 = 1,
44 : : qm_dc_portal_caam = 2,
45 : : qm_dc_portal_pme = 3
46 : : };
47 : :
48 : : __rte_internal
49 : : u16 dpaa_get_qm_channel_caam(void);
50 : :
51 : : __rte_internal
52 : : u16 dpaa_get_qm_channel_pool(void);
53 : :
54 : : /* Portal processing (interrupt) sources */
55 : : #define QM_PIRQ_CCSCI 0x00200000 /* CEETM Congestion State Change */
56 : : #define QM_PIRQ_CSCI 0x00100000 /* Congestion State Change */
57 : : #define QM_PIRQ_EQCI 0x00080000 /* Enqueue Command Committed */
58 : : #define QM_PIRQ_EQRI 0x00040000 /* EQCR Ring (below threshold) */
59 : : #define QM_PIRQ_DQRI 0x00020000 /* DQRR Ring (non-empty) */
60 : : #define QM_PIRQ_MRI 0x00010000 /* MR Ring (non-empty) */
61 : : /*
62 : : * This mask contains all the interrupt sources that need handling except DQRI,
63 : : * ie. that if present should trigger slow-path processing.
64 : : */
65 : : #define QM_PIRQ_SLOW (QM_PIRQ_CSCI | QM_PIRQ_EQCI | QM_PIRQ_EQRI | \
66 : : QM_PIRQ_MRI | QM_PIRQ_CCSCI)
67 : :
68 : : /* For qman_static_dequeue_*** APIs */
69 : : #define QM_SDQCR_CHANNELS_POOL_MASK 0x00007fff
70 : : /* for n in [1,15] */
71 : : #define QM_SDQCR_CHANNELS_POOL(n) (0x00008000 >> (n))
72 : : /* for conversion from n of qm_channel */
73 : : static inline u32 QM_SDQCR_CHANNELS_POOL_CONV(u16 channel)
74 : : {
75 [ # # ]: 0 : return QM_SDQCR_CHANNELS_POOL(channel + 1 - dpaa_get_qm_channel_pool());
76 : : }
77 : :
78 : : /* For qman_volatile_dequeue(); Choose one PRECEDENCE. EXACT is optional. Use
79 : : * NUMFRAMES(n) (6-bit) or NUMFRAMES_TILLEMPTY to fill in the frame-count. Use
80 : : * FQID(n) to fill in the frame queue ID.
81 : : */
82 : : #define QM_VDQCR_PRECEDENCE_VDQCR 0x0
83 : : #define QM_VDQCR_PRECEDENCE_SDQCR 0x80000000
84 : : #define QM_VDQCR_EXACT 0x40000000
85 : : #define QM_VDQCR_NUMFRAMES_MASK 0x3f000000
86 : : #define QM_VDQCR_NUMFRAMES_SET(n) (((n) & 0x3f) << 24)
87 : : #define QM_VDQCR_NUMFRAMES_GET(n) (((n) >> 24) & 0x3f)
88 : : #define QM_VDQCR_NUMFRAMES_TILLEMPTY QM_VDQCR_NUMFRAMES_SET(0)
89 : :
90 : : /* --- QMan data structures (and associated constants) --- */
91 : :
92 : : /* Represents s/w corenet portal mapped data structures */
93 : : struct qm_eqcr_entry; /* EQCR (EnQueue Command Ring) entries */
94 : : struct qm_dqrr_entry; /* DQRR (DeQueue Response Ring) entries */
95 : : struct qm_mr_entry; /* MR (Message Ring) entries */
96 : : struct qm_mc_command; /* MC (Management Command) command */
97 : : struct qm_mc_result; /* MC result */
98 : :
99 : : #define QM_FD_FORMAT_SG 0x4
100 : : #define QM_FD_FORMAT_LONG 0x2
101 : : #define QM_FD_FORMAT_COMPOUND 0x1
102 : : enum qm_fd_format {
103 : : /*
104 : : * 'contig' implies a contiguous buffer, whereas 'sg' implies a
105 : : * scatter-gather table. 'big' implies a 29-bit length with no offset
106 : : * field, otherwise length is 20-bit and offset is 9-bit. 'compound'
107 : : * implies a s/g-like table, where each entry itself represents a frame
108 : : * (contiguous or scatter-gather) and the 29-bit "length" is
109 : : * interpreted purely for congestion calculations, ie. a "congestion
110 : : * weight".
111 : : */
112 : : qm_fd_contig = 0,
113 : : qm_fd_contig_big = QM_FD_FORMAT_LONG,
114 : : qm_fd_sg = QM_FD_FORMAT_SG,
115 : : qm_fd_sg_big = QM_FD_FORMAT_SG | QM_FD_FORMAT_LONG,
116 : : qm_fd_compound = QM_FD_FORMAT_COMPOUND
117 : : };
118 : :
119 : : /* Capitalised versions are un-typed but can be used in static expressions */
120 : : #define QM_FD_CONTIG 0
121 : : #define QM_FD_CONTIG_BIG QM_FD_FORMAT_LONG
122 : : #define QM_FD_SG QM_FD_FORMAT_SG
123 : : #define QM_FD_SG_BIG (QM_FD_FORMAT_SG | QM_FD_FORMAT_LONG)
124 : : #define QM_FD_COMPOUND QM_FD_FORMAT_COMPOUND
125 : :
126 : : /* "Frame Descriptor (FD)" */
127 : : struct __rte_aligned(8) qm_fd {
128 : : union {
129 : : struct {
130 : : #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
131 : : u8 dd:2; /* dynamic debug */
132 : : u8 liodn_offset:6;
133 : : u8 bpid:8; /* Buffer Pool ID */
134 : : u8 eliodn_offset:4;
135 : : u8 __reserved:4;
136 : : u8 addr_hi; /* high 8-bits of 40-bit address */
137 : : u32 addr_lo; /* low 32-bits of 40-bit address */
138 : : #else
139 : : u8 liodn_offset:6;
140 : : u8 dd:2; /* dynamic debug */
141 : : u8 bpid:8; /* Buffer Pool ID */
142 : : u8 __reserved:4;
143 : : u8 eliodn_offset:4;
144 : : u8 addr_hi; /* high 8-bits of 40-bit address */
145 : : u32 addr_lo; /* low 32-bits of 40-bit address */
146 : : #endif
147 : : };
148 : : struct {
149 : : u64 __notaddress:24;
150 : : /* More efficient address accessor */
151 : : u64 addr:40;
152 : : };
153 : : u64 opaque_addr;
154 : : };
155 : : /* The 'format' field indicates the interpretation of the remaining 29
156 : : * bits of the 32-bit word. For packing reasons, it is duplicated in the
157 : : * other union elements. Note, union'd structs are difficult to use with
158 : : * static initialisation under gcc, in which case use the "opaque" form
159 : : * with one of the macros.
160 : : */
161 : : union {
162 : : /* For easier/faster copying of this part of the fd (eg. from a
163 : : * DQRR entry to an EQCR entry) copy 'opaque'
164 : : */
165 : : u32 opaque;
166 : : /* If 'format' is _contig or _sg, 20b length and 9b offset */
167 : : struct {
168 : : #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
169 : : enum qm_fd_format format:3;
170 : : u16 offset:9;
171 : : u32 length20:20;
172 : : #else
173 : : u32 length20:20;
174 : : u16 offset:9;
175 : : enum qm_fd_format format:3;
176 : : #endif
177 : : };
178 : : /* If 'format' is _contig_big or _sg_big, 29b length */
179 : : struct {
180 : : #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
181 : : enum qm_fd_format _format1:3;
182 : : u32 length29:29;
183 : : #else
184 : : u32 length29:29;
185 : : enum qm_fd_format _format1:3;
186 : : #endif
187 : : };
188 : : /* If 'format' is _compound, 29b "congestion weight" */
189 : : struct {
190 : : #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
191 : : enum qm_fd_format _format2:3;
192 : : u32 cong_weight:29;
193 : : #else
194 : : u32 cong_weight:29;
195 : : enum qm_fd_format _format2:3;
196 : : #endif
197 : : };
198 : : };
199 : : union {
200 : : u32 cmd;
201 : : u32 status;
202 : : };
203 : : };
204 : : #define QM_FD_DD_NULL 0x00
205 : : #define QM_FD_PID_MASK 0x3f
206 : : static inline u64 qm_fd_addr_get64(const struct qm_fd *fd)
207 : : {
208 : 0 : return fd->addr;
209 : : }
210 : :
211 : : static inline dma_addr_t qm_fd_addr(const struct qm_fd *fd)
212 : : {
213 : 0 : return (dma_addr_t)fd->addr;
214 : : }
215 : :
216 : : /* Macro, so we compile better if 'v' isn't always 64-bit */
217 : : #define qm_fd_addr_set64(fd, v) \
218 : : do { \
219 : : struct qm_fd *__fd931 = (fd); \
220 : : __fd931->addr = v; \
221 : : } while (0)
222 : :
223 : : /* Scatter/Gather table entry */
224 : : struct __rte_packed_begin qm_sg_entry {
225 : : union {
226 : : struct {
227 : : #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
228 : : u8 __reserved1[3];
229 : : u8 addr_hi; /* high 8-bits of 40-bit address */
230 : : u32 addr_lo; /* low 32-bits of 40-bit address */
231 : : #else
232 : : u32 addr_lo; /* low 32-bits of 40-bit address */
233 : : u8 addr_hi; /* high 8-bits of 40-bit address */
234 : : u8 __reserved1[3];
235 : : #endif
236 : : };
237 : : struct {
238 : : #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
239 : : u64 __notaddress:24;
240 : : u64 addr:40;
241 : : #else
242 : : u64 addr:40;
243 : : u64 __notaddress:24;
244 : : #endif
245 : : };
246 : : u64 opaque;
247 : : };
248 : : union {
249 : : struct {
250 : : #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
251 : : u32 extension:1; /* Extension bit */
252 : : u32 final:1; /* Final bit */
253 : : u32 length:30;
254 : : #else
255 : : u32 length:30;
256 : : u32 final:1; /* Final bit */
257 : : u32 extension:1; /* Extension bit */
258 : : #endif
259 : : };
260 : : u32 val;
261 : : };
262 : : u8 __reserved2;
263 : : u8 bpid;
264 : : union {
265 : : struct {
266 : : #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
267 : : u16 __reserved3:3;
268 : : u16 offset:13;
269 : : #else
270 : : u16 offset:13;
271 : : u16 __reserved3:3;
272 : : #endif
273 : : };
274 : : u16 val_off;
275 : : };
276 : : } __rte_packed_end;
277 : : static inline u64 qm_sg_entry_get64(const struct qm_sg_entry *sg)
278 : : {
279 : 0 : return sg->addr;
280 : : }
281 : :
282 : : static inline dma_addr_t qm_sg_addr(const struct qm_sg_entry *sg)
283 : : {
284 : : return (dma_addr_t)sg->addr;
285 : : }
286 : :
287 : : /* Macro, so we compile better if 'v' isn't always 64-bit */
288 : : #define qm_sg_entry_set64(sg, v) \
289 : : do { \
290 : : struct qm_sg_entry *__sg931 = (sg); \
291 : : __sg931->addr = v; \
292 : : } while (0)
293 : :
294 : : /* See 1.5.8.1: "Enqueue Command" */
295 : : struct __rte_aligned(8) __rte_packed_begin qm_eqcr_entry {
296 : : u8 __dont_write_directly__verb;
297 : : u8 dca;
298 : : u16 seqnum;
299 : : u32 orp; /* 24-bit */
300 : : u32 fqid; /* 24-bit */
301 : : u32 tag;
302 : : struct qm_fd fd; /* this has alignment 8 */
303 : : u8 __reserved3[32];
304 : : } __rte_packed_end;
305 : :
306 : :
307 : : /* "Frame Dequeue Response" */
308 : : struct __rte_aligned(8) qm_dqrr_entry {
309 : : u8 verb;
310 : : u8 stat;
311 : : u16 seqnum; /* 15-bit */
312 : : u8 tok;
313 : : u8 __reserved2[3];
314 : : u32 fqid; /* 24-bit */
315 : : u32 contextB;
316 : : struct qm_fd fd; /* this has alignment 8 */
317 : : u8 __reserved4[32];
318 : : };
319 : :
320 : : #define QM_DQRR_VERB_VBIT 0x80
321 : : #define QM_DQRR_VERB_MASK 0x7f /* where the verb contains; */
322 : : #define QM_DQRR_VERB_FRAME_DEQUEUE 0x60 /* "this format" */
323 : : #define QM_DQRR_STAT_FQ_EMPTY 0x80 /* FQ empty */
324 : : #define QM_DQRR_STAT_FQ_HELDACTIVE 0x40 /* FQ held active */
325 : : #define QM_DQRR_STAT_FQ_FORCEELIGIBLE 0x20 /* FQ was force-eligible'd */
326 : : #define QM_DQRR_STAT_FD_VALID 0x10 /* has a non-NULL FD */
327 : : #define QM_DQRR_STAT_UNSCHEDULED 0x02 /* Unscheduled dequeue */
328 : : #define QM_DQRR_STAT_DQCR_EXPIRED 0x01 /* VDQCR or PDQCR expired*/
329 : :
330 : :
331 : : /* "ERN Message Response" */
332 : : /* "FQ State Change Notification" */
333 : : struct __rte_aligned(8) __rte_packed_begin qm_mr_entry {
334 : : union {
335 : : alignas(8) struct __rte_packed_begin {
336 : : u8 verb;
337 : : u8 dca;
338 : : u16 seqnum;
339 : : u8 rc; /* Rejection Code */
340 : : u32 orp:24;
341 : : u32 fqid; /* 24-bit */
342 : : u32 tag;
343 : : struct qm_fd fd; /* this has alignment 8 */
344 : : } __rte_packed_end ern;
345 : : alignas(8) struct __rte_packed_begin {
346 : : u8 verb;
347 : : #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
348 : : u8 colour:2; /* See QM_MR_DCERN_COLOUR_* */
349 : : u8 __reserved1:4;
350 : : enum qm_dc_portal portal:2;
351 : : #else
352 : : enum qm_dc_portal portal:3;
353 : : u8 __reserved1:3;
354 : : u8 colour:2; /* See QM_MR_DCERN_COLOUR_* */
355 : : #endif
356 : : u16 __reserved2;
357 : : u8 rc; /* Rejection Code */
358 : : u32 __reserved3:24;
359 : : u32 fqid; /* 24-bit */
360 : : u32 tag;
361 : : struct qm_fd fd; /* this has alignment 8 */
362 : : } __rte_packed_end dcern;
363 : : alignas(8) struct __rte_packed_begin {
364 : : u8 verb;
365 : : u8 fqs; /* Frame Queue Status */
366 : : u8 __reserved1[6];
367 : : u32 fqid; /* 24-bit */
368 : : u32 contextB;
369 : : u8 __reserved2[16];
370 : : } __rte_packed_end fq; /* FQRN/FQRNI/FQRL/FQPN */
371 : : };
372 : : u8 __reserved2[32];
373 : : } __rte_packed_end;
374 : : #define QM_MR_VERB_VBIT 0x80
375 : : /*
376 : : * ERNs originating from direct-connect portals ("dcern") use 0x20 as a verb
377 : : * which would be invalid as a s/w enqueue verb. A s/w ERN can be distinguished
378 : : * from the other MR types by noting if the 0x20 bit is unset.
379 : : */
380 : : #define QM_MR_VERB_TYPE_MASK 0x27
381 : : #define QM_MR_VERB_DC_ERN 0x20
382 : : #define QM_MR_VERB_FQRN 0x21
383 : : #define QM_MR_VERB_FQRNI 0x22
384 : : #define QM_MR_VERB_FQRL 0x23
385 : : #define QM_MR_VERB_FQPN 0x24
386 : : #define QM_MR_RC_MASK 0xf0 /* contains one of; */
387 : : #define QM_MR_RC_CGR_TAILDROP 0x00
388 : : #define QM_MR_RC_WRED 0x10
389 : : #define QM_MR_RC_ERROR 0x20
390 : : #define QM_MR_RC_ORPWINDOW_EARLY 0x30
391 : : #define QM_MR_RC_ORPWINDOW_LATE 0x40
392 : : #define QM_MR_RC_FQ_TAILDROP 0x50
393 : : #define QM_MR_RC_ORPWINDOW_RETIRED 0x60
394 : : #define QM_MR_RC_ORP_ZERO 0x70
395 : : #define QM_MR_FQS_ORLPRESENT 0x02 /* ORL fragments to come */
396 : : #define QM_MR_FQS_NOTEMPTY 0x01 /* FQ has enqueued frames */
397 : : #define QM_MR_DCERN_COLOUR_GREEN 0x00
398 : : #define QM_MR_DCERN_COLOUR_YELLOW 0x01
399 : : #define QM_MR_DCERN_COLOUR_RED 0x02
400 : : #define QM_MR_DCERN_COLOUR_OVERRIDE 0x03
401 : : /*
402 : : * An identical structure of FQD fields is present in the "Init FQ" command and
403 : : * the "Query FQ" result, it's suctioned out into the "struct qm_fqd" type.
404 : : * Within that, the 'stashing' and 'taildrop' pieces are also factored out, the
405 : : * latter has two inlines to assist with converting to/from the mant+exp
406 : : * representation.
407 : : */
408 : : struct __rte_packed_begin qm_fqd_stashing {
409 : : /* See QM_STASHING_EXCL_<...> */
410 : : #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
411 : : u8 exclusive;
412 : : u8 __reserved1:2;
413 : : /* Numbers of cachelines */
414 : : u8 annotation_cl:2;
415 : : u8 data_cl:2;
416 : : u8 context_cl:2;
417 : : #else
418 : : u8 context_cl:2;
419 : : u8 data_cl:2;
420 : : u8 annotation_cl:2;
421 : : u8 __reserved1:2;
422 : : u8 exclusive;
423 : : #endif
424 : : } __rte_packed_end;
425 : : struct __rte_packed_begin qm_fqd_taildrop {
426 : : #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
427 : : u16 __reserved1:3;
428 : : u16 mant:8;
429 : : u16 exp:5;
430 : : #else
431 : : u16 exp:5;
432 : : u16 mant:8;
433 : : u16 __reserved1:3;
434 : : #endif
435 : : } __rte_packed_end;
436 : : struct __rte_packed_begin qm_fqd_oac {
437 : : /* "Overhead Accounting Control", see QM_OAC_<...> */
438 : : #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
439 : : u8 oac:2; /* "Overhead Accounting Control" */
440 : : u8 __reserved1:6;
441 : : #else
442 : : u8 __reserved1:6;
443 : : u8 oac:2; /* "Overhead Accounting Control" */
444 : : #endif
445 : : /* Two's-complement value (-128 to +127) */
446 : : signed char oal; /* "Overhead Accounting Length" */
447 : : } __rte_packed_end;
448 : : struct __rte_packed_begin qm_fqd {
449 : : union {
450 : : u8 orpc;
451 : : struct __rte_packed_begin {
452 : : #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
453 : : u8 __reserved1:2;
454 : : u8 orprws:3;
455 : : u8 oa:1;
456 : : u8 olws:2;
457 : : #else
458 : : u8 olws:2;
459 : : u8 oa:1;
460 : : u8 orprws:3;
461 : : u8 __reserved1:2;
462 : : #endif
463 : : } __rte_packed_end;
464 : : };
465 : : u8 cgid;
466 : : u16 fq_ctrl; /* See QM_FQCTRL_<...> */
467 : : union {
468 : : u16 dest_wq;
469 : : struct __rte_packed_begin {
470 : : #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
471 : : u16 channel:13; /* qm_channel */
472 : : u16 wq:3;
473 : : #else
474 : : u16 wq:3;
475 : : u16 channel:13; /* qm_channel */
476 : : #endif
477 : : } __rte_packed_end dest;
478 : : };
479 : : #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
480 : : u16 __reserved2:1;
481 : : u16 ics_cred:15;
482 : : #else
483 : : u16 __reserved2:1;
484 : : u16 ics_cred:15;
485 : : #endif
486 : : /*
487 : : * For "Initialize Frame Queue" commands, the write-enable mask
488 : : * determines whether 'td' or 'oac_init' is observed. For query
489 : : * commands, this field is always 'td', and 'oac_query' (below) reflects
490 : : * the Overhead ACcounting values.
491 : : */
492 : : union {
493 : : uint16_t opaque_td;
494 : : struct qm_fqd_taildrop td;
495 : : struct qm_fqd_oac oac_init;
496 : : };
497 : : u32 context_b;
498 : : union {
499 : : /* Treat it as 64-bit opaque */
500 : : u64 opaque;
501 : : struct {
502 : : #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
503 : : u32 hi;
504 : : u32 lo;
505 : : #else
506 : : u32 lo;
507 : : u32 hi;
508 : : #endif
509 : : };
510 : : /* Treat it as s/w portal stashing config */
511 : : /* see "FQD Context_A field used for [...]" */
512 : : struct __rte_packed_begin {
513 : : #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
514 : : struct qm_fqd_stashing stashing;
515 : : /*
516 : : * 48-bit address of FQ context to
517 : : * stash, must be cacheline-aligned
518 : : */
519 : : u16 context_hi;
520 : : u32 context_lo;
521 : : #else
522 : : u32 context_lo;
523 : : u16 context_hi;
524 : : struct qm_fqd_stashing stashing;
525 : : #endif
526 : : } __rte_packed_end;
527 : : } context_a;
528 : : struct qm_fqd_oac oac_query;
529 : : } __rte_packed_end;
530 : : /* 64-bit converters for context_hi/lo */
531 : : static inline u64 qm_fqd_stashing_get64(const struct qm_fqd *fqd)
532 : : {
533 : : return ((u64)fqd->context_a.context_hi << 32) |
534 : : (u64)fqd->context_a.context_lo;
535 : : }
536 : :
537 : : static inline dma_addr_t qm_fqd_stashing_addr(const struct qm_fqd *fqd)
538 : : {
539 : : return (dma_addr_t)qm_fqd_stashing_get64(fqd);
540 : : }
541 : :
542 : : static inline u64 qm_fqd_context_a_get64(const struct qm_fqd *fqd)
543 : : {
544 : : return ((u64)fqd->context_a.hi << 32) |
545 : : (u64)fqd->context_a.lo;
546 : : }
547 : :
548 : : static inline void qm_fqd_stashing_set64(struct qm_fqd *fqd, u64 addr)
549 : : {
550 : 0 : fqd->context_a.context_hi = upper_32_bits(addr);
551 : 0 : fqd->context_a.context_lo = lower_32_bits(addr);
552 : 0 : }
553 : :
554 : : static inline void qm_fqd_context_a_set64(struct qm_fqd *fqd, u64 addr)
555 : : {
556 : 0 : fqd->context_a.hi = upper_32_bits(addr);
557 : 0 : fqd->context_a.lo = lower_32_bits(addr);
558 : : }
559 : :
560 : : /* convert a threshold value into mant+exp representation */
561 : : static inline int qm_fqd_taildrop_set(struct qm_fqd_taildrop *td, u32 val,
562 : : int roundup)
563 : : {
564 : : u32 e = 0;
565 : : int oddbit = 0;
566 : :
567 : : if (val > 0xe0000000)
568 : : return -ERANGE;
569 : : while (val > 0xff) {
570 : : oddbit = val & 1;
571 : : val >>= 1;
572 : : e++;
573 : : if (roundup && oddbit)
574 : : val++;
575 : : }
576 : : td->exp = e;
577 : : td->mant = val;
578 : : return 0;
579 : : }
580 : :
581 : : /* and the other direction */
582 : : static inline u32 qm_fqd_taildrop_get(const struct qm_fqd_taildrop *td)
583 : : {
584 : : return (u32)td->mant << td->exp;
585 : : }
586 : :
587 : :
588 : : /* See "Frame Queue Descriptor (FQD)" */
589 : : /* Frame Queue Descriptor (FQD) field 'fq_ctrl' uses these constants */
590 : : #define QM_FQCTRL_MASK 0x07ff /* 'fq_ctrl' flags; */
591 : : #define QM_FQCTRL_CGE 0x0400 /* Congestion Group Enable */
592 : : #define QM_FQCTRL_TDE 0x0200 /* Tail-Drop Enable */
593 : : #define QM_FQCTRL_ORP 0x0100 /* ORP Enable */
594 : : #define QM_FQCTRL_CTXASTASHING 0x0080 /* Context-A stashing */
595 : : #define QM_FQCTRL_CPCSTASH 0x0040 /* CPC Stash Enable */
596 : : #define QM_FQCTRL_FORCESFDR 0x0008 /* High-priority SFDRs */
597 : : #define QM_FQCTRL_AVOIDBLOCK 0x0004 /* Don't block active */
598 : : #define QM_FQCTRL_HOLDACTIVE 0x0002 /* Hold active in portal */
599 : : #define QM_FQCTRL_PREFERINCACHE 0x0001 /* Aggressively cache FQD */
600 : : #define QM_FQCTRL_LOCKINCACHE QM_FQCTRL_PREFERINCACHE /* older naming */
601 : :
602 : : /* See "FQD Context_A field used for [...] */
603 : : /* Frame Queue Descriptor (FQD) field 'CONTEXT_A' uses these constants */
604 : : #define QM_STASHING_EXCL_ANNOTATION 0x04
605 : : #define QM_STASHING_EXCL_DATA 0x02
606 : : #define QM_STASHING_EXCL_CTX 0x01
607 : :
608 : : /* See "Intra Class Scheduling" */
609 : : /* FQD field 'OAC' (Overhead ACcounting) uses these constants */
610 : : #define QM_OAC_ICS 0x2 /* Accounting for Intra-Class Scheduling */
611 : : #define QM_OAC_CG 0x1 /* Accounting for Congestion Groups */
612 : :
613 : : /*
614 : : * This struct represents the 32-bit "WR_PARM_[GYR]" parameters in CGR fields
615 : : * and associated commands/responses. The WRED parameters are calculated from
616 : : * these fields as follows;
617 : : * MaxTH = MA * (2 ^ Mn)
618 : : * Slope = SA / (2 ^ Sn)
619 : : * MaxP = 4 * (Pn + 1)
620 : : */
621 : : struct __rte_packed_begin qm_cgr_wr_parm {
622 : : union {
623 : : u32 word;
624 : : struct __rte_packed_begin {
625 : : #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
626 : : u32 MA:8;
627 : : u32 Mn:5;
628 : : u32 SA:7; /* must be between 64-127 */
629 : : u32 Sn:6;
630 : : u32 Pn:6;
631 : : #else
632 : : u32 Pn:6;
633 : : u32 Sn:6;
634 : : u32 SA:7; /* must be between 64-127 */
635 : : u32 Mn:5;
636 : : u32 MA:8;
637 : : #endif
638 : : } __rte_packed_end;
639 : : };
640 : : } __rte_packed_end;
641 : : /*
642 : : * This struct represents the 13-bit "CS_THRES" CGR field. In the corresponding
643 : : * management commands, this is padded to a 16-bit structure field, so that's
644 : : * how we represent it here. The congestion state threshold is calculated from
645 : : * these fields as follows;
646 : : * CS threshold = TA * (2 ^ Tn)
647 : : */
648 : : struct __rte_packed_begin qm_cgr_cs_thres {
649 : : union {
650 : : u16 hword;
651 : : struct __rte_packed_begin {
652 : : #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
653 : : u16 __reserved:3;
654 : : u16 TA:8;
655 : : u16 Tn:5;
656 : : #else
657 : : u16 Tn:5;
658 : : u16 TA:8;
659 : : u16 __reserved:3;
660 : : #endif
661 : : } __rte_packed_end;
662 : : };
663 : : } __rte_packed_end;
664 : : /*
665 : : * This identical structure of CGR fields is present in the "Init/Modify CGR"
666 : : * commands and the "Query CGR" result. It's suctioned out here into its own
667 : : * struct.
668 : : */
669 : : struct __rte_packed_begin __qm_mc_cgr {
670 : : struct qm_cgr_wr_parm wr_parm_g;
671 : : struct qm_cgr_wr_parm wr_parm_y;
672 : : struct qm_cgr_wr_parm wr_parm_r;
673 : : u8 wr_en_g; /* boolean, use QM_CGR_EN */
674 : : u8 wr_en_y; /* boolean, use QM_CGR_EN */
675 : : u8 wr_en_r; /* boolean, use QM_CGR_EN */
676 : : u8 cscn_en; /* boolean, use QM_CGR_EN */
677 : : union {
678 : : struct {
679 : : #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
680 : : u16 cscn_targ_upd_ctrl; /* use QM_CSCN_TARG_UDP_ */
681 : : u16 cscn_targ_dcp_low; /* CSCN_TARG_DCP low-16bits */
682 : : #else
683 : : u16 cscn_targ_dcp_low; /* CSCN_TARG_DCP low-16bits */
684 : : u16 cscn_targ_upd_ctrl; /* use QM_CSCN_TARG_UDP_ */
685 : : #endif
686 : : };
687 : : u32 cscn_targ; /* use QM_CGR_TARG_* */
688 : : };
689 : : u8 cstd_en; /* boolean, use QM_CGR_EN */
690 : : u8 cs; /* boolean, only used in query response */
691 : : union {
692 : : struct qm_cgr_cs_thres cs_thres;
693 : : /* use qm_cgr_cs_thres_set64() */
694 : : u16 __cs_thres;
695 : : };
696 : : u8 mode; /* QMAN_CGR_MODE_FRAME not supported in rev1.0 */
697 : : } __rte_packed_end;
698 : : #define QM_CGR_EN 0x01 /* For wr_en_*, cscn_en, cstd_en */
699 : : #define QM_CGR_TARG_UDP_CTRL_WRITE_BIT 0x8000 /* value written to portal bit*/
700 : : #define QM_CGR_TARG_UDP_CTRL_DCP 0x4000 /* 0: SWP, 1: DCP */
701 : : #define QM_CGR_TARG_PORTAL(n) (0x80000000 >> (n)) /* s/w portal, 0-9 */
702 : : #define QM_CGR_TARG_FMAN0 0x00200000 /* direct-connect portal: fman0 */
703 : : #define QM_CGR_TARG_FMAN1 0x00100000 /* : fman1 */
704 : : /* Convert CGR thresholds to/from "cs_thres" format */
705 : : static inline u64 qm_cgr_cs_thres_get64(const struct qm_cgr_cs_thres *th)
706 : : {
707 : : return (u64)th->TA << th->Tn;
708 : : }
709 : :
710 : : static inline int qm_cgr_cs_thres_set64(struct qm_cgr_cs_thres *th, u64 val,
711 : : int roundup)
712 : : {
713 : : u32 e = 0;
714 : : int oddbit = 0;
715 : :
716 [ # # # # : 0 : while (val > 0xff) {
# # ]
717 : : oddbit = val & 1;
718 : 0 : val >>= 1;
719 : 0 : e++;
720 : : if (roundup && oddbit)
721 : : val++;
722 : : }
723 : 0 : th->Tn = e;
724 : 0 : th->TA = val;
725 : : return 0;
726 : : }
727 : :
728 : : /* See 1.5.8.5.1: "Initialize FQ" */
729 : : /* See 1.5.8.5.2: "Query FQ" */
730 : : /* See 1.5.8.5.3: "Query FQ Non-Programmable Fields" */
731 : : /* See 1.5.8.5.4: "Alter FQ State Commands " */
732 : : /* See 1.5.8.6.1: "Initialize/Modify CGR" */
733 : : /* See 1.5.8.6.2: "CGR Test Write" */
734 : : /* See 1.5.8.6.3: "Query CGR" */
735 : : /* See 1.5.8.6.4: "Query Congestion Group State" */
736 : : struct __rte_packed_begin qm_mcc_initfq {
737 : : u8 __reserved1;
738 : : u16 we_mask; /* Write Enable Mask */
739 : : u32 fqid; /* 24-bit */
740 : : u16 count; /* Initialises 'count+1' FQDs */
741 : : struct qm_fqd fqd; /* the FQD fields go here */
742 : : u8 __reserved3[30];
743 : : } __rte_packed_end;
744 : : struct __rte_packed_begin qm_mcc_queryfq {
745 : : u8 __reserved1[3];
746 : : u32 fqid; /* 24-bit */
747 : : u8 __reserved2[56];
748 : : } __rte_packed_end;
749 : : struct __rte_packed_begin qm_mcc_queryfq_np {
750 : : u8 __reserved1[3];
751 : : u32 fqid; /* 24-bit */
752 : : u8 __reserved2[56];
753 : : } __rte_packed_end;
754 : : struct __rte_packed_begin qm_mcc_alterfq {
755 : : u8 __reserved1[3];
756 : : u32 fqid; /* 24-bit */
757 : : u8 __reserved2;
758 : : u8 count; /* number of consecutive FQID */
759 : : u8 __reserved3[10];
760 : : u32 context_b; /* frame queue context b */
761 : : u8 __reserved4[40];
762 : : } __rte_packed_end;
763 : : struct __rte_packed_begin qm_mcc_initcgr {
764 : : u8 __reserved1;
765 : : u16 we_mask; /* Write Enable Mask */
766 : : struct __qm_mc_cgr cgr; /* CGR fields */
767 : : u8 __reserved2[2];
768 : : u8 cgid;
769 : : u8 __reserved4[32];
770 : : } __rte_packed_end;
771 : : struct __rte_packed_begin qm_mcc_cgrtestwrite {
772 : : u8 __reserved1[2];
773 : : u8 i_bcnt_hi:8;/* high 8-bits of 40-bit "Instant" */
774 : : u32 i_bcnt_lo; /* low 32-bits of 40-bit */
775 : : u8 __reserved2[23];
776 : : u8 cgid;
777 : : u8 __reserved3[32];
778 : : } __rte_packed_end;
779 : : struct __rte_packed_begin qm_mcc_querycgr {
780 : : u8 __reserved1[30];
781 : : u8 cgid;
782 : : u8 __reserved2[32];
783 : : } __rte_packed_end;
784 : : struct __rte_packed_begin qm_mcc_querycongestion {
785 : : u8 __reserved[63];
786 : : } __rte_packed_end;
787 : : struct __rte_packed_begin qm_mcc_querywq {
788 : : u8 __reserved;
789 : : /* select channel if verb != QUERYWQ_DEDICATED */
790 : : union {
791 : : u16 channel_wq; /* ignores wq (3 lsbits) */
792 : : struct __rte_packed_begin {
793 : : #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
794 : : u16 id:13; /* qm_channel */
795 : : u16 __reserved1:3;
796 : : #else
797 : : u16 __reserved1:3;
798 : : u16 id:13; /* qm_channel */
799 : : #endif
800 : : } __rte_packed_end channel;
801 : : };
802 : : u8 __reserved2[60];
803 : : } __rte_packed_end;
804 : :
805 : : struct __rte_packed_begin qm_mc_command {
806 : : u8 __dont_write_directly__verb;
807 : : union {
808 : : struct qm_mcc_initfq initfq;
809 : : struct qm_mcc_queryfq queryfq;
810 : : struct qm_mcc_queryfq_np queryfq_np;
811 : : struct qm_mcc_alterfq alterfq;
812 : : struct qm_mcc_initcgr initcgr;
813 : : struct qm_mcc_cgrtestwrite cgrtestwrite;
814 : : struct qm_mcc_querycgr querycgr;
815 : : struct qm_mcc_querycongestion querycongestion;
816 : : struct qm_mcc_querywq querywq;
817 : : };
818 : : } __rte_packed_end;
819 : :
820 : : /* INITFQ-specific flags */
821 : : #define QM_INITFQ_WE_MASK 0x01ff /* 'Write Enable' flags; */
822 : : #define QM_INITFQ_WE_OAC 0x0100
823 : : #define QM_INITFQ_WE_ORPC 0x0080
824 : : #define QM_INITFQ_WE_CGID 0x0040
825 : : #define QM_INITFQ_WE_FQCTRL 0x0020
826 : : #define QM_INITFQ_WE_DESTWQ 0x0010
827 : : #define QM_INITFQ_WE_ICSCRED 0x0008
828 : : #define QM_INITFQ_WE_TDTHRESH 0x0004
829 : : #define QM_INITFQ_WE_CONTEXTB 0x0002
830 : : #define QM_INITFQ_WE_CONTEXTA 0x0001
831 : : /* INITCGR/MODIFYCGR-specific flags */
832 : : #define QM_CGR_WE_MASK 0x07ff /* 'Write Enable Mask'; */
833 : : #define QM_CGR_WE_WR_PARM_G 0x0400
834 : : #define QM_CGR_WE_WR_PARM_Y 0x0200
835 : : #define QM_CGR_WE_WR_PARM_R 0x0100
836 : : #define QM_CGR_WE_WR_EN_G 0x0080
837 : : #define QM_CGR_WE_WR_EN_Y 0x0040
838 : : #define QM_CGR_WE_WR_EN_R 0x0020
839 : : #define QM_CGR_WE_CSCN_EN 0x0010
840 : : #define QM_CGR_WE_CSCN_TARG 0x0008
841 : : #define QM_CGR_WE_CSTD_EN 0x0004
842 : : #define QM_CGR_WE_CS_THRES 0x0002
843 : : #define QM_CGR_WE_MODE 0x0001
844 : :
845 : : struct __rte_packed_begin qm_mcr_initfq {
846 : : u8 __reserved1[62];
847 : : } __rte_packed_end;
848 : : struct __rte_packed_begin qm_mcr_queryfq {
849 : : u8 __reserved1[8];
850 : : struct qm_fqd fqd; /* the FQD fields are here */
851 : : u8 __reserved2[30];
852 : : } __rte_packed_end;
853 : : struct __rte_packed_begin qm_mcr_queryfq_np {
854 : : u8 __reserved1;
855 : : u8 state; /* QM_MCR_NP_STATE_*** */
856 : : #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
857 : : u8 __reserved2;
858 : : u32 fqd_link:24;
859 : : u16 __reserved3:2;
860 : : u16 odp_seq:14;
861 : : u16 __reserved4:2;
862 : : u16 orp_nesn:14;
863 : : u16 __reserved5:1;
864 : : u16 orp_ea_hseq:15;
865 : : u16 __reserved6:1;
866 : : u16 orp_ea_tseq:15;
867 : : u8 __reserved7;
868 : : u32 orp_ea_hptr:24;
869 : : u8 __reserved8;
870 : : u32 orp_ea_tptr:24;
871 : : u8 __reserved9;
872 : : u32 pfdr_hptr:24;
873 : : u8 __reserved10;
874 : : u32 pfdr_tptr:24;
875 : : u8 __reserved11[5];
876 : : u8 __reserved12:7;
877 : : u8 is:1;
878 : : u16 ics_surp;
879 : : u32 byte_cnt;
880 : : u8 __reserved13;
881 : : u32 frm_cnt:24;
882 : : u32 __reserved14;
883 : : u16 ra1_sfdr; /* QM_MCR_NP_RA1_*** */
884 : : u16 ra2_sfdr; /* QM_MCR_NP_RA2_*** */
885 : : u16 __reserved15;
886 : : u16 od1_sfdr; /* QM_MCR_NP_OD1_*** */
887 : : u16 od2_sfdr; /* QM_MCR_NP_OD2_*** */
888 : : u16 od3_sfdr; /* QM_MCR_NP_OD3_*** */
889 : : #else
890 : : u8 __reserved2;
891 : : u32 fqd_link:24;
892 : :
893 : : u16 odp_seq:14;
894 : : u16 __reserved3:2;
895 : :
896 : : u16 orp_nesn:14;
897 : : u16 __reserved4:2;
898 : :
899 : : u16 orp_ea_hseq:15;
900 : : u16 __reserved5:1;
901 : :
902 : : u16 orp_ea_tseq:15;
903 : : u16 __reserved6:1;
904 : :
905 : : u8 __reserved7;
906 : : u32 orp_ea_hptr:24;
907 : :
908 : : u8 __reserved8;
909 : : u32 orp_ea_tptr:24;
910 : :
911 : : u8 __reserved9;
912 : : u32 pfdr_hptr:24;
913 : :
914 : : u8 __reserved10;
915 : : u32 pfdr_tptr:24;
916 : :
917 : : u8 __reserved11[5];
918 : : u8 is:1;
919 : : u8 __reserved12:7;
920 : : u16 ics_surp;
921 : : u32 byte_cnt;
922 : : u8 __reserved13;
923 : : u32 frm_cnt:24;
924 : : u32 __reserved14;
925 : : u16 ra1_sfdr; /* QM_MCR_NP_RA1_*** */
926 : : u16 ra2_sfdr; /* QM_MCR_NP_RA2_*** */
927 : : u16 __reserved15;
928 : : u16 od1_sfdr; /* QM_MCR_NP_OD1_*** */
929 : : u16 od2_sfdr; /* QM_MCR_NP_OD2_*** */
930 : : u16 od3_sfdr; /* QM_MCR_NP_OD3_*** */
931 : : #endif
932 : : } __rte_packed_end;
933 : :
934 : : struct __rte_packed_begin qm_mcr_alterfq {
935 : : u8 fqs; /* Frame Queue Status */
936 : : u8 __reserved1[61];
937 : : } __rte_packed_end;
938 : : struct __rte_packed_begin qm_mcr_initcgr {
939 : : u8 __reserved1[62];
940 : : } __rte_packed_end;
941 : : struct __rte_packed_begin qm_mcr_cgrtestwrite {
942 : : u16 __reserved1;
943 : : struct __qm_mc_cgr cgr; /* CGR fields */
944 : : u8 __reserved2[3];
945 : : u32 __reserved3:24;
946 : : u32 i_bcnt_hi:8;/* high 8-bits of 40-bit "Instant" */
947 : : u32 i_bcnt_lo; /* low 32-bits of 40-bit */
948 : : u32 __reserved4:24;
949 : : u32 a_bcnt_hi:8;/* high 8-bits of 40-bit "Average" */
950 : : u32 a_bcnt_lo; /* low 32-bits of 40-bit */
951 : : u16 lgt; /* Last Group Tick */
952 : : u16 wr_prob_g;
953 : : u16 wr_prob_y;
954 : : u16 wr_prob_r;
955 : : u8 __reserved5[8];
956 : : } __rte_packed_end;
957 : : struct __rte_packed_begin qm_mcr_querycgr {
958 : : u16 __reserved1;
959 : : struct __qm_mc_cgr cgr; /* CGR fields */
960 : : u8 __reserved2[3];
961 : : union {
962 : : struct {
963 : : #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
964 : : u32 __reserved3:24;
965 : : u32 i_bcnt_hi:8;/* high 8-bits of 40-bit "Instant" */
966 : : u32 i_bcnt_lo; /* low 32-bits of 40-bit */
967 : : #else
968 : : u32 i_bcnt_lo; /* low 32-bits of 40-bit */
969 : : u32 i_bcnt_hi:8;/* high 8-bits of 40-bit "Instant" */
970 : : u32 __reserved3:24;
971 : : #endif
972 : : };
973 : : u64 i_bcnt;
974 : : };
975 : : union {
976 : : struct {
977 : : #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
978 : : u32 __reserved4:24;
979 : : u32 a_bcnt_hi:8;/* high 8-bits of 40-bit "Average" */
980 : : u32 a_bcnt_lo; /* low 32-bits of 40-bit */
981 : : #else
982 : : u32 a_bcnt_lo; /* low 32-bits of 40-bit */
983 : : u32 a_bcnt_hi:8;/* high 8-bits of 40-bit "Average" */
984 : : u32 __reserved4:24;
985 : : #endif
986 : : };
987 : : u64 a_bcnt;
988 : : };
989 : : union {
990 : : u32 cscn_targ_swp[4];
991 : : u8 __reserved5[16];
992 : : };
993 : : } __rte_packed_end;
994 : :
995 : : struct __qm_mcr_querycongestion {
996 : : u32 state[8];
997 : : };
998 : :
999 : : struct __rte_packed_begin qm_mcr_querycongestion {
1000 : : u8 __reserved[30];
1001 : : /* Access this struct using QM_MCR_QUERYCONGESTION() */
1002 : : struct __qm_mcr_querycongestion state;
1003 : : } __rte_packed_end;
1004 : : struct __rte_packed_begin qm_mcr_querywq {
1005 : : union {
1006 : : u16 channel_wq; /* ignores wq (3 lsbits) */
1007 : : struct __rte_packed_begin {
1008 : : #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1009 : : u16 id:13; /* qm_channel */
1010 : : u16 __reserved:3;
1011 : : #else
1012 : : u16 __reserved:3;
1013 : : u16 id:13; /* qm_channel */
1014 : : #endif
1015 : : } __rte_packed_end channel;
1016 : : };
1017 : : u8 __reserved[28];
1018 : : u32 wq_len[8];
1019 : : } __rte_packed_end;
1020 : :
1021 : : struct __rte_packed_begin qm_mc_result {
1022 : : u8 verb;
1023 : : u8 result;
1024 : : union {
1025 : : struct qm_mcr_initfq initfq;
1026 : : struct qm_mcr_queryfq queryfq;
1027 : : struct qm_mcr_queryfq_np queryfq_np;
1028 : : struct qm_mcr_alterfq alterfq;
1029 : : struct qm_mcr_initcgr initcgr;
1030 : : struct qm_mcr_cgrtestwrite cgrtestwrite;
1031 : : struct qm_mcr_querycgr querycgr;
1032 : : struct qm_mcr_querycongestion querycongestion;
1033 : : struct qm_mcr_querywq querywq;
1034 : : };
1035 : : } __rte_packed_end;
1036 : :
1037 : : #define QM_MCR_VERB_RRID 0x80
1038 : : #define QM_MCR_VERB_MASK QM_MCC_VERB_MASK
1039 : : #define QM_MCR_VERB_INITFQ_PARKED QM_MCC_VERB_INITFQ_PARKED
1040 : : #define QM_MCR_VERB_INITFQ_SCHED QM_MCC_VERB_INITFQ_SCHED
1041 : : #define QM_MCR_VERB_QUERYFQ QM_MCC_VERB_QUERYFQ
1042 : : #define QM_MCR_VERB_QUERYFQ_NP QM_MCC_VERB_QUERYFQ_NP
1043 : : #define QM_MCR_VERB_QUERYWQ QM_MCC_VERB_QUERYWQ
1044 : : #define QM_MCR_VERB_QUERYWQ_DEDICATED QM_MCC_VERB_QUERYWQ_DEDICATED
1045 : : #define QM_MCR_VERB_ALTER_SCHED QM_MCC_VERB_ALTER_SCHED
1046 : : #define QM_MCR_VERB_ALTER_FE QM_MCC_VERB_ALTER_FE
1047 : : #define QM_MCR_VERB_ALTER_RETIRE QM_MCC_VERB_ALTER_RETIRE
1048 : : #define QM_MCR_VERB_ALTER_OOS QM_MCC_VERB_ALTER_OOS
1049 : : #define QM_MCR_RESULT_NULL 0x00
1050 : : #define QM_MCR_RESULT_OK 0xf0
1051 : : #define QM_MCR_RESULT_ERR_FQID 0xf1
1052 : : #define QM_MCR_RESULT_ERR_FQSTATE 0xf2
1053 : : #define QM_MCR_RESULT_ERR_NOTEMPTY 0xf3 /* OOS fails if FQ is !empty */
1054 : : #define QM_MCR_RESULT_ERR_BADCHANNEL 0xf4
1055 : : #define QM_MCR_RESULT_PENDING 0xf8
1056 : : #define QM_MCR_RESULT_ERR_BADCOMMAND 0xff
1057 : : #define QM_MCR_NP_STATE_FE 0x10
1058 : : #define QM_MCR_NP_STATE_R 0x08
1059 : : #define QM_MCR_NP_STATE_MASK 0x07 /* Reads FQD::STATE; */
1060 : : #define QM_MCR_NP_STATE_OOS 0x00
1061 : : #define QM_MCR_NP_STATE_RETIRED 0x01
1062 : : #define QM_MCR_NP_STATE_TEN_SCHED 0x02
1063 : : #define QM_MCR_NP_STATE_TRU_SCHED 0x03
1064 : : #define QM_MCR_NP_STATE_PARKED 0x04
1065 : : #define QM_MCR_NP_STATE_ACTIVE 0x05
1066 : : #define QM_MCR_NP_PTR_MASK 0x07ff /* for RA[12] & OD[123] */
1067 : : #define QM_MCR_NP_RA1_NRA(v) (((v) >> 14) & 0x3) /* FQD::NRA */
1068 : : #define QM_MCR_NP_RA2_IT(v) (((v) >> 14) & 0x1) /* FQD::IT */
1069 : : #define QM_MCR_NP_OD1_NOD(v) (((v) >> 14) & 0x3) /* FQD::NOD */
1070 : : #define QM_MCR_NP_OD3_NPC(v) (((v) >> 14) & 0x3) /* FQD::NPC */
1071 : : #define QM_MCR_FQS_ORLPRESENT 0x02 /* ORL fragments to come */
1072 : : #define QM_MCR_FQS_NOTEMPTY 0x01 /* FQ has enqueued frames */
1073 : : /* This extracts the state for congestion group 'n' from a query response.
1074 : : * Eg.
1075 : : * u8 cgr = [...];
1076 : : * struct qm_mc_result *res = [...];
1077 : : * printf("congestion group %d congestion state: %d\n", cgr,
1078 : : * QM_MCR_QUERYCONGESTION(&res->querycongestion.state, cgr));
1079 : : */
1080 : : #define __CGR_WORD(num) (num >> 5)
1081 : : #define __CGR_SHIFT(num) (num & 0x1f)
1082 : : #define __CGR_NUM (sizeof(struct __qm_mcr_querycongestion) << 3)
1083 : : static inline int QM_MCR_QUERYCONGESTION(struct __qm_mcr_querycongestion *p,
1084 : : u8 cgr)
1085 : : {
1086 [ # # # # ]: 0 : return p->state[__CGR_WORD(cgr)] & (0x80000000 >> __CGR_SHIFT(cgr));
1087 : : }
1088 : :
1089 : : /* Portal and Frame Queues */
1090 : : /* Represents a managed portal */
1091 : : struct qman_portal;
1092 : :
1093 : : /*
1094 : : * This object type represents QMan frame queue descriptors (FQD), it is
1095 : : * cacheline-aligned, and initialised by qman_create_fq(). The structure is
1096 : : * defined further down.
1097 : : */
1098 : : struct qman_fq;
1099 : :
1100 : : /*
1101 : : * This object type represents a QMan congestion group, it is defined further
1102 : : * down.
1103 : : */
1104 : : struct qman_cgr;
1105 : :
1106 : : /*
1107 : : * This enum, and the callback type that returns it, are used when handling
1108 : : * dequeued frames via DQRR. Note that for "null" callbacks registered with the
1109 : : * portal object (for handling dequeues that do not demux because context_b is
1110 : : * NULL), the return value *MUST* be qman_cb_dqrr_consume.
1111 : : */
1112 : : enum qman_cb_dqrr_result {
1113 : : /* DQRR entry can be consumed */
1114 : : qman_cb_dqrr_consume,
1115 : : /* Like _consume, but requests parking - FQ must be held-active */
1116 : : qman_cb_dqrr_park,
1117 : : /* Does not consume, for DCA mode only. This allows out-of-order
1118 : : * consumes by explicit calls to qman_dca() and/or the use of implicit
1119 : : * DCA via EQCR entries.
1120 : : */
1121 : : qman_cb_dqrr_defer,
1122 : : /*
1123 : : * Stop processing without consuming this ring entry. Exits the current
1124 : : * qman_p_poll_dqrr() or interrupt-handling, as appropriate. If within
1125 : : * an interrupt handler, the callback would typically call
1126 : : * qman_irqsource_remove(QM_PIRQ_DQRI) before returning this value,
1127 : : * otherwise the interrupt will reassert immediately.
1128 : : */
1129 : : qman_cb_dqrr_stop,
1130 : : /* Like qman_cb_dqrr_stop, but consumes the current entry. */
1131 : : qman_cb_dqrr_consume_stop
1132 : : };
1133 : :
1134 : : typedef enum qman_cb_dqrr_result (*qman_cb_dqrr)(struct qman_portal *qm,
1135 : : struct qman_fq *fq,
1136 : : const struct qm_dqrr_entry *dqrr);
1137 : :
1138 : : typedef enum qman_cb_dqrr_result (*qman_dpdk_cb_dqrr)(void *event,
1139 : : struct qman_portal *qm,
1140 : : struct qman_fq *fq,
1141 : : const struct qm_dqrr_entry *dqrr,
1142 : : void **bd);
1143 : :
1144 : : /* This callback type is used when handling buffers in dpdk pull mode */
1145 : : typedef void (*qman_dpdk_pull_cb_dqrr)(struct qman_fq **fq,
1146 : : struct qm_dqrr_entry **dqrr,
1147 : : void **bufs,
1148 : : int num_bufs);
1149 : :
1150 : : typedef void (*qman_dpdk_cb_prepare)(struct qm_dqrr_entry *dq, void **bufs);
1151 : :
1152 : : /*
1153 : : * This callback type is used when handling ERNs, FQRNs and FQRLs via MR. They
1154 : : * are always consumed after the callback returns.
1155 : : */
1156 : : typedef void (*qman_cb_mr)(struct qman_portal *qm, struct qman_fq *fq,
1157 : : const struct qm_mr_entry *msg);
1158 : :
1159 : : /* This callback type is used when handling DCP ERNs */
1160 : : typedef void (*qman_cb_dc_ern)(struct qman_portal *qm,
1161 : : const struct qm_mr_entry *msg);
1162 : :
1163 : : /* This callback function will be used to free mbufs of ERN */
1164 : : typedef uint16_t (*qman_cb_free_mbuf)(const struct qm_fd *fd);
1165 : :
1166 : : /*
1167 : : * s/w-visible states. Ie. tentatively scheduled + truly scheduled + active +
1168 : : * held-active + held-suspended are just "sched". Things like "retired" will not
1169 : : * be assumed until it is complete (ie. QMAN_FQ_STATE_CHANGING is set until
1170 : : * then, to indicate it's completing and to gate attempts to retry the retire
1171 : : * command). Note, park commands do not set QMAN_FQ_STATE_CHANGING because it's
1172 : : * technically impossible in the case of enqueue DCAs (which refer to DQRR ring
1173 : : * index rather than the FQ that ring entry corresponds to), so repeated park
1174 : : * commands are allowed (if you're silly enough to try) but won't change FQ
1175 : : * state, and the resulting park notifications move FQs from "sched" to
1176 : : * "parked".
1177 : : */
1178 : : enum qman_fq_state {
1179 : : qman_fq_state_oos,
1180 : : qman_fq_state_parked,
1181 : : qman_fq_state_sched,
1182 : : qman_fq_state_retired
1183 : : };
1184 : :
1185 : :
1186 : : /*
1187 : : * Frame queue objects (struct qman_fq) are stored within memory passed to
1188 : : * qman_create_fq(), as this allows stashing of caller-provided demux callback
1189 : : * pointers at no extra cost to stashing of (driver-internal) FQ state. If the
1190 : : * caller wishes to add per-FQ state and have it benefit from dequeue-stashing,
1191 : : * they should;
1192 : : *
1193 : : * (a) extend the qman_fq structure with their state; eg.
1194 : : *
1195 : : * // myfq is allocated and driver_fq callbacks filled in;
1196 : : * struct my_fq {
1197 : : * struct qman_fq base;
1198 : : * int an_extra_field;
1199 : : * [ ... add other fields to be associated with each FQ ...]
1200 : : * } *myfq = some_my_fq_allocator();
1201 : : * struct qman_fq *fq = qman_create_fq(fqid, flags, &myfq->base);
1202 : : *
1203 : : * // in a dequeue callback, access extra fields from 'fq' via a cast;
1204 : : * struct my_fq *myfq = (struct my_fq *)fq;
1205 : : * do_something_with(myfq->an_extra_field);
1206 : : * [...]
1207 : : *
1208 : : * (b) when and if configuring the FQ for context stashing, specify how ever
1209 : : * many cachelines are required to stash 'struct my_fq', to accelerate not
1210 : : * only the QMan driver but the callback as well.
1211 : : */
1212 : :
1213 : : struct qman_fq_cb {
1214 : : union { /* for dequeued frames */
1215 : : qman_dpdk_cb_dqrr dqrr_dpdk_cb;
1216 : : qman_dpdk_pull_cb_dqrr dqrr_dpdk_pull_cb;
1217 : : qman_cb_dqrr dqrr;
1218 : : };
1219 : : qman_dpdk_cb_prepare dqrr_prepare;
1220 : : qman_cb_mr ern; /* for s/w ERNs */
1221 : : qman_cb_mr fqs; /* frame-queue state changes*/
1222 : : };
1223 : :
1224 : : struct qman_fq {
1225 : : /* Caller of qman_create_fq() provides these demux callbacks */
1226 : : struct qman_fq_cb cb;
1227 : :
1228 : : u32 fqid_le;
1229 : : u32 fqid;
1230 : :
1231 : : int q_fd;
1232 : : u16 ch_id;
1233 : : int8_t vsp_id;
1234 : : u8 cgr_groupid;
1235 : : u8 is_static:4;
1236 : : u8 qp_initialized:4;
1237 : :
1238 : : /* DPDK Interface */
1239 : : void *dpaa_intf;
1240 : : /*to store tx_conf_queue corresponding to tx_queue*/
1241 : : struct qman_fq *tx_conf_queue;
1242 : :
1243 : : struct rte_event ev;
1244 : : /* affined portal in case of static queue */
1245 : : struct qman_portal *qp;
1246 : : struct dpaa_bp_info *bp_array;
1247 : :
1248 : : volatile unsigned long flags;
1249 : :
1250 : : enum qman_fq_state state;
1251 : : spinlock_t fqlock;
1252 : :
1253 : : struct rb_node node;
1254 : : #ifdef CONFIG_FSL_QMAN_FQ_LOOKUP
1255 : : void **qman_fq_lookup_table;
1256 : : u32 key;
1257 : : #endif
1258 : : u16 nb_desc;
1259 : : u16 resv;
1260 : : u64 offloads;
1261 : : };
1262 : :
1263 : : /*
1264 : : * This callback type is used when handling congestion group entry/exit.
1265 : : * 'congested' is non-zero on congestion-entry, and zero on congestion-exit.
1266 : : */
1267 : : typedef void (*qman_cb_cgr)(struct qman_portal *qm,
1268 : : struct qman_cgr *cgr, int congested);
1269 : :
1270 : : struct qman_cgr {
1271 : : /* Set these prior to qman_create_cgr() */
1272 : : u32 cgrid; /* 0..255, but u32 to allow specials like -1, 256, etc.*/
1273 : : qman_cb_cgr cb;
1274 : : /* These are private to the driver */
1275 : : u16 chan; /* portal channel this object is created on */
1276 : : struct list_head node;
1277 : : };
1278 : :
1279 : : /* Flags to qman_create_fq() */
1280 : : #define QMAN_FQ_FLAG_NO_ENQUEUE 0x00000001 /* can't enqueue */
1281 : : #define QMAN_FQ_FLAG_NO_MODIFY 0x00000002 /* can only enqueue */
1282 : : #define QMAN_FQ_FLAG_TO_DCPORTAL 0x00000004 /* consumed by CAAM/PME/Fman */
1283 : : #define QMAN_FQ_FLAG_LOCKED 0x00000008 /* multi-core locking */
1284 : : #define QMAN_FQ_FLAG_AS_IS 0x00000010 /* query h/w state */
1285 : : #define QMAN_FQ_FLAG_DYNAMIC_FQID 0x00000020 /* (de)allocate fqid */
1286 : :
1287 : : /* Flags to qman_destroy_fq() */
1288 : : #define QMAN_FQ_DESTROY_PARKED 0x00000001 /* FQ can be parked or OOS */
1289 : :
1290 : : /* Flags from qman_fq_state() */
1291 : : #define QMAN_FQ_STATE_CHANGING 0x80000000 /* 'state' is changing */
1292 : : #define QMAN_FQ_STATE_NE 0x40000000 /* retired FQ isn't empty */
1293 : : #define QMAN_FQ_STATE_ORL 0x20000000 /* retired FQ has ORL */
1294 : : #define QMAN_FQ_STATE_BLOCKOOS 0xe0000000 /* if any are set, no OOS */
1295 : : #define QMAN_FQ_STATE_CGR_EN 0x10000000 /* CGR enabled */
1296 : : #define QMAN_FQ_STATE_VDQCR 0x08000000 /* being volatile dequeued */
1297 : :
1298 : : /* Flags to qman_init_fq() */
1299 : : #define QMAN_INITFQ_FLAG_SCHED 0x00000001 /* schedule rather than park */
1300 : : #define QMAN_INITFQ_FLAG_LOCAL 0x00000004 /* set dest portal */
1301 : :
1302 : : /* Flags to qman_enqueue(). NB, the strange numbering is to align with hardware,
1303 : : * bit-wise. (NB: the PME API is sensitive to these precise numberings too, so
1304 : : * any change here should be audited in PME.)
1305 : : */
1306 : : #define QMAN_ENQUEUE_FLAG_WATCH_CGR 0x00080000 /* watch congestion state */
1307 : : #define QMAN_ENQUEUE_FLAG_DCA 0x00008000 /* perform enqueue-DCA */
1308 : : #define QMAN_ENQUEUE_FLAG_DCA_PARK 0x00004000 /* If DCA, requests park */
1309 : : #define QMAN_ENQUEUE_FLAG_DCA_PTR(p) /* If DCA, p is DQRR entry */ \
1310 : : (((u32)(p) << 2) & 0x00000f00)
1311 : : #define QMAN_ENQUEUE_FLAG_C_GREEN 0x00000000 /* choose one C_*** flag */
1312 : : #define QMAN_ENQUEUE_FLAG_C_YELLOW 0x00000008
1313 : : #define QMAN_ENQUEUE_FLAG_C_RED 0x00000010
1314 : : #define QMAN_ENQUEUE_FLAG_C_OVERRIDE 0x00000018
1315 : : /* For the ORP-specific qman_enqueue_orp() variant;
1316 : : * - this flag indicates "Not Last In Sequence", ie. all but the final fragment
1317 : : * of a frame.
1318 : : */
1319 : : #define QMAN_ENQUEUE_FLAG_NLIS 0x01000000
1320 : : /* - this flag performs no enqueue but fills in an ORP sequence number that
1321 : : * would otherwise block it (eg. if a frame has been dropped).
1322 : : */
1323 : : #define QMAN_ENQUEUE_FLAG_HOLE 0x02000000
1324 : : /* - this flag performs no enqueue but advances NESN to the given sequence
1325 : : * number.
1326 : : */
1327 : : #define QMAN_ENQUEUE_FLAG_NESN 0x04000000
1328 : :
1329 : : /* Flags to qman_modify_cgr() */
1330 : : #define QMAN_CGR_FLAG_USE_INIT 0x00000001
1331 : : #define QMAN_CGR_MODE_FRAME 0x00000001
1332 : :
1333 : : #ifdef CONFIG_FSL_QMAN_FQ_LOOKUP
1334 : : __rte_internal
1335 : : void qman_set_fq_lookup_table(void **table);
1336 : : #endif
1337 : :
1338 : : /**
1339 : : * qman_get_portal_index - get portal configuration index
1340 : : */
1341 : : int qman_get_portal_index(void);
1342 : :
1343 : : __rte_internal
1344 : : u32 qman_portal_dequeue(struct rte_event ev[], unsigned int poll_limit,
1345 : : void **bufs);
1346 : :
1347 : : /**
1348 : : * qman_irqsource_add - add processing sources to be interrupt-driven
1349 : : * @bits: bitmask of QM_PIRQ_**I processing sources
1350 : : *
1351 : : * Adds processing sources that should be interrupt-driven (rather than
1352 : : * processed via qman_poll_***() functions). Returns zero for success, or
1353 : : * -EINVAL if the current CPU is sharing a portal hosted on another CPU.
1354 : : */
1355 : : __rte_internal
1356 : : int qman_irqsource_add(u32 bits);
1357 : :
1358 : : /**
1359 : : * qman_fq_portal_irqsource_add - similar to qman_irqsource_add, but it
1360 : : * takes portal (fq specific) as input rather than using the thread affined
1361 : : * portal.
1362 : : */
1363 : : __rte_internal
1364 : : int qman_fq_portal_irqsource_add(struct qman_portal *p, u32 bits);
1365 : :
1366 : : /**
1367 : : * qman_irqsource_remove - remove processing sources from being interrupt-driven
1368 : : * @bits: bitmask of QM_PIRQ_**I processing sources
1369 : : *
1370 : : * Removes processing sources from being interrupt-driven, so that they will
1371 : : * instead be processed via qman_poll_***() functions. Returns zero for success,
1372 : : * or -EINVAL if the current CPU is sharing a portal hosted on another CPU.
1373 : : */
1374 : : __rte_internal
1375 : : int qman_irqsource_remove(u32 bits);
1376 : :
1377 : : /**
1378 : : * qman_fq_portal_irqsource_remove - similar to qman_irqsource_remove, but it
1379 : : * takes portal (fq specific) as input rather than using the thread affined
1380 : : * portal.
1381 : : */
1382 : : __rte_internal
1383 : : int qman_fq_portal_irqsource_remove(struct qman_portal *p, u32 bits);
1384 : :
1385 : : /**
1386 : : * qman_affine_channel - return the channel ID of an portal
1387 : : * @cpu: the cpu whose affine portal is the subject of the query
1388 : : *
1389 : : * If @cpu is -1, the affine portal for the current CPU will be used. It is a
1390 : : * bug to call this function for any value of @cpu (other than -1) that is not a
1391 : : * member of the cpu mask.
1392 : : */
1393 : : u16 qman_affine_channel(int cpu);
1394 : :
1395 : : __rte_internal
1396 : : unsigned int qman_portal_poll_rx(unsigned int poll_limit,
1397 : : void **bufs, struct qman_portal *q);
1398 : :
1399 : : /**
1400 : : * qman_set_vdq - Issue a volatile dequeue command
1401 : : * @fq: Frame Queue on which the volatile dequeue command is issued
1402 : : * @num: Number of Frames requested for volatile dequeue
1403 : : * @vdqcr_flags: QM_VDQCR_EXACT flag to for VDQCR command
1404 : : *
1405 : : * This function will issue a volatile dequeue command to the QMAN.
1406 : : */
1407 : : __rte_internal
1408 : : int qman_set_vdq(struct qman_fq *fq, u16 num, uint32_t vdqcr_flags);
1409 : :
1410 : : /**
1411 : : * qman_dequeue - Get the DQRR entry after volatile dequeue command
1412 : : * @fq: Frame Queue on which the volatile dequeue command is issued
1413 : : *
1414 : : * This function will return the DQRR entry after a volatile dequeue command
1415 : : * is issued. It will keep returning NULL until there is no packet available on
1416 : : * the DQRR.
1417 : : */
1418 : : __rte_internal
1419 : : struct qm_dqrr_entry *qman_dequeue(struct qman_fq *fq);
1420 : :
1421 : : /**
1422 : : * qman_dqrr_consume - Consume the DQRR entry after volatile dequeue
1423 : : * @fq: Frame Queue on which the volatile dequeue command is issued
1424 : : * @dq: DQRR entry to consume. This is the one which is provided by the
1425 : : * 'qbman_dequeue' command.
1426 : : *
1427 : : * This will consume the DQRR enrey and make it available for next volatile
1428 : : * dequeue.
1429 : : */
1430 : : __rte_internal
1431 : : void qman_dqrr_consume(struct qman_fq *fq,
1432 : : struct qm_dqrr_entry *dq);
1433 : :
1434 : : /**
1435 : : * qman_stop_dequeues - Stop h/w dequeuing to the s/w portal
1436 : : *
1437 : : * Disables DQRR processing of the portal. This is reference-counted, so
1438 : : * qman_start_dequeues() must be called as many times as qman_stop_dequeues() to
1439 : : * truly re-enable dequeuing.
1440 : : */
1441 : : void qman_stop_dequeues(void);
1442 : :
1443 : : /**
1444 : : * qman_start_dequeues - (Re)start h/w dequeuing to the s/w portal
1445 : : *
1446 : : * Enables DQRR processing of the portal. This is reference-counted, so
1447 : : * qman_start_dequeues() must be called as many times as qman_stop_dequeues() to
1448 : : * truly re-enable dequeuing.
1449 : : */
1450 : : void qman_start_dequeues(void);
1451 : :
1452 : : /**
1453 : : * qman_static_dequeue_add - Add pool channels to the portal SDQCR
1454 : : * @pools: bit-mask of pool channels, using QM_SDQCR_CHANNELS_POOL(n)
1455 : : *
1456 : : * Adds a set of pool channels to the portal's static dequeue command register
1457 : : * (SDQCR). The requested pools are limited to those the portal has dequeue
1458 : : * access to.
1459 : : */
1460 : : __rte_internal
1461 : : void qman_static_dequeue_add(u32 pools, struct qman_portal *qm);
1462 : :
1463 : : /**
1464 : : * qman_static_dequeue_del - Remove pool channels from the portal SDQCR
1465 : : * @pools: bit-mask of pool channels, using QM_SDQCR_CHANNELS_POOL(n)
1466 : : *
1467 : : * Removes a set of pool channels from the portal's static dequeue command
1468 : : * register (SDQCR). The requested pools are limited to those the portal has
1469 : : * dequeue access to.
1470 : : */
1471 : : void qman_static_dequeue_del(u32 pools, struct qman_portal *qp);
1472 : :
1473 : : /**
1474 : : * qman_static_dequeue_get - return the portal's current SDQCR
1475 : : *
1476 : : * Returns the portal's current static dequeue command register (SDQCR). The
1477 : : * entire register is returned, so if only the currently-enabled pool channels
1478 : : * are desired, mask the return value with QM_SDQCR_CHANNELS_POOL_MASK.
1479 : : */
1480 : : u32 qman_static_dequeue_get(struct qman_portal *qp);
1481 : :
1482 : : /**
1483 : : * qman_dca - Perform a Discrete Consumption Acknowledgment
1484 : : * @dq: the DQRR entry to be consumed
1485 : : * @park_request: indicates whether the held-active @fq should be parked
1486 : : *
1487 : : * Only allowed in DCA-mode portals, for DQRR entries whose handler callback had
1488 : : * previously returned 'qman_cb_dqrr_defer'. NB, as with the other APIs, this
1489 : : * does not take a 'portal' argument but implies the core affine portal from the
1490 : : * cpu that is currently executing the function. For reasons of locking, this
1491 : : * function must be called from the same CPU as that which processed the DQRR
1492 : : * entry in the first place.
1493 : : */
1494 : : void qman_dca(const struct qm_dqrr_entry *dq, int park_request);
1495 : :
1496 : : /**
1497 : : * qman_dca_index - Perform a Discrete Consumption Acknowledgment
1498 : : * @index: the DQRR index to be consumed
1499 : : * @park_request: indicates whether the held-active @fq should be parked
1500 : : *
1501 : : * Only allowed in DCA-mode portals, for DQRR entries whose handler callback had
1502 : : * previously returned 'qman_cb_dqrr_defer'. NB, as with the other APIs, this
1503 : : * does not take a 'portal' argument but implies the core affine portal from the
1504 : : * cpu that is currently executing the function. For reasons of locking, this
1505 : : * function must be called from the same CPU as that which processed the DQRR
1506 : : * entry in the first place.
1507 : : */
1508 : : __rte_internal
1509 : : void qman_dca_index(u8 index, int park_request);
1510 : :
1511 : : /**
1512 : : * qman_eqcr_is_empty - Determine if portal's EQCR is empty
1513 : : *
1514 : : * For use in situations where a cpu-affine caller needs to determine when all
1515 : : * enqueues for the local portal have been processed by Qman but can't use the
1516 : : * QMAN_ENQUEUE_FLAG_WAIT_SYNC flag to do this from the final qman_enqueue().
1517 : : * The function forces tracking of EQCR consumption (which normally doesn't
1518 : : * happen until enqueue processing needs to find space to put new enqueue
1519 : : * commands), and returns zero if the ring still has unprocessed entries,
1520 : : * non-zero if it is empty.
1521 : : */
1522 : : int qman_eqcr_is_empty(void);
1523 : :
1524 : : /**
1525 : : * qman_set_dc_ern - Set the handler for DCP enqueue rejection notifications
1526 : : * @handler: callback for processing DCP ERNs
1527 : : * @affine: whether this handler is specific to the locally affine portal
1528 : : *
1529 : : * If a hardware block's interface to Qman (ie. its direct-connect portal, or
1530 : : * DCP) is configured not to receive enqueue rejections, then any enqueues
1531 : : * through that DCP that are rejected will be sent to a given software portal.
1532 : : * If @affine is non-zero, then this handler will only be used for DCP ERNs
1533 : : * received on the portal affine to the current CPU. If multiple CPUs share a
1534 : : * portal and they all call this function, they will be setting the handler for
1535 : : * the same portal! If @affine is zero, then this handler will be global to all
1536 : : * portals handled by this instance of the driver. Only those portals that do
1537 : : * not have their own affine handler will use the global handler.
1538 : : */
1539 : : void qman_set_dc_ern(qman_cb_dc_ern handler, int affine);
1540 : :
1541 : : /* FQ management */
1542 : : /* ------------- */
1543 : : /**
1544 : : * qman_create_fq - Allocates a FQ
1545 : : * @fqid: the index of the FQD to encapsulate, must be "Out of Service"
1546 : : * @flags: bit-mask of QMAN_FQ_FLAG_*** options
1547 : : * @fq: memory for storing the 'fq', with callbacks filled in
1548 : : *
1549 : : * Creates a frame queue object for the given @fqid, unless the
1550 : : * QMAN_FQ_FLAG_DYNAMIC_FQID flag is set in @flags, in which case a FQID is
1551 : : * dynamically allocated (or the function fails if none are available). Once
1552 : : * created, the caller should not touch the memory at 'fq' except as extended to
1553 : : * adjacent memory for user-defined fields (see the definition of "struct
1554 : : * qman_fq" for more info). NO_MODIFY is only intended for enqueuing to
1555 : : * pre-existing frame-queues that aren't to be otherwise interfered with, it
1556 : : * prevents all other modifications to the frame queue. The TO_DCPORTAL flag
1557 : : * causes the driver to honour any contextB modifications requested in the
1558 : : * qm_init_fq() API, as this indicates the frame queue will be consumed by a
1559 : : * direct-connect portal (PME, CAAM, or Fman). When frame queues are consumed by
1560 : : * software portals, the contextB field is controlled by the driver and can't be
1561 : : * modified by the caller. If the AS_IS flag is specified, management commands
1562 : : * will be used on portal @p to query state for frame queue @fqid and construct
1563 : : * a frame queue object based on that, rather than assuming/requiring that it be
1564 : : * Out of Service.
1565 : : */
1566 : : __rte_internal
1567 : : int qman_create_fq(u32 fqid, u32 flags, struct qman_fq *fq);
1568 : :
1569 : : /**
1570 : : * qman_destroy_fq - Deallocates a FQ
1571 : : * @fq: the frame queue object to release
1572 : : * @flags: bit-mask of QMAN_FQ_FREE_*** options
1573 : : *
1574 : : * The memory for this frame queue object ('fq' provided in qman_create_fq()) is
1575 : : * not deallocated but the caller regains ownership, to do with as desired. The
1576 : : * FQ must be in the 'out-of-service' state unless the QMAN_FQ_FREE_PARKED flag
1577 : : * is specified, in which case it may also be in the 'parked' state.
1578 : : */
1579 : : void qman_destroy_fq(struct qman_fq *fq, u32 flags);
1580 : :
1581 : : /**
1582 : : * qman_fq_fqid - Queries the frame queue ID of a FQ object
1583 : : * @fq: the frame queue object to query
1584 : : */
1585 : : __rte_internal
1586 : : u32 qman_fq_fqid(struct qman_fq *fq);
1587 : :
1588 : : /**
1589 : : * qman_fq_state - Queries the state of a FQ object
1590 : : * @fq: the frame queue object to query
1591 : : * @state: pointer to state enum to return the FQ scheduling state
1592 : : * @flags: pointer to state flags to receive QMAN_FQ_STATE_*** bitmask
1593 : : *
1594 : : * Queries the state of the FQ object, without performing any h/w commands.
1595 : : * This captures the state, as seen by the driver, at the time the function
1596 : : * executes.
1597 : : */
1598 : : __rte_internal
1599 : : void qman_fq_state(struct qman_fq *fq, enum qman_fq_state *state, u32 *flags);
1600 : :
1601 : : /**
1602 : : * qman_init_fq - Initialises FQ fields, leaves the FQ "parked" or "scheduled"
1603 : : * @fq: the frame queue object to modify, must be 'parked' or new.
1604 : : * @flags: bit-mask of QMAN_INITFQ_FLAG_*** options
1605 : : * @opts: the FQ-modification settings, as defined in the low-level API
1606 : : *
1607 : : * The @opts parameter comes from the low-level portal API. Select
1608 : : * QMAN_INITFQ_FLAG_SCHED in @flags to cause the frame queue to be scheduled
1609 : : * rather than parked. NB, @opts can be NULL.
1610 : : *
1611 : : * Note that some fields and options within @opts may be ignored or overwritten
1612 : : * by the driver;
1613 : : * 1. the 'count' and 'fqid' fields are always ignored (this operation only
1614 : : * affects one frame queue: @fq).
1615 : : * 2. the QM_INITFQ_WE_CONTEXTB option of the 'we_mask' field and the associated
1616 : : * 'fqd' structure's 'context_b' field are sometimes overwritten;
1617 : : * - if @fq was not created with QMAN_FQ_FLAG_TO_DCPORTAL, then context_b is
1618 : : * initialised to a value used by the driver for demux.
1619 : : * - if context_b is initialised for demux, so is context_a in case stashing
1620 : : * is requested (see item 4).
1621 : : * (So caller control of context_b is only possible for TO_DCPORTAL frame queue
1622 : : * objects.)
1623 : : * 3. if @flags contains QMAN_INITFQ_FLAG_LOCAL, the 'fqd' structure's
1624 : : * 'dest::channel' field will be overwritten to match the portal used to issue
1625 : : * the command. If the WE_DESTWQ write-enable bit had already been set by the
1626 : : * caller, the channel workqueue will be left as-is, otherwise the write-enable
1627 : : * bit is set and the workqueue is set to a default of 4. If the "LOCAL" flag
1628 : : * isn't set, the destination channel/workqueue fields and the write-enable bit
1629 : : * are left as-is.
1630 : : * 4. if the driver overwrites context_a/b for demux, then if
1631 : : * QM_INITFQ_WE_CONTEXTA is set, the driver will only overwrite
1632 : : * context_a.address fields and will leave the stashing fields provided by the
1633 : : * user alone, otherwise it will zero out the context_a.stashing fields.
1634 : : */
1635 : : __rte_internal
1636 : : int qman_init_fq(struct qman_fq *fq, u32 flags, struct qm_mcc_initfq *opts);
1637 : :
1638 : : /**
1639 : : * qman_schedule_fq - Schedules a FQ
1640 : : * @fq: the frame queue object to schedule, must be 'parked'
1641 : : *
1642 : : * Schedules the frame queue, which must be Parked, which takes it to
1643 : : * Tentatively-Scheduled or Truly-Scheduled depending on its fill-level.
1644 : : */
1645 : : int qman_schedule_fq(struct qman_fq *fq);
1646 : :
1647 : : /**
1648 : : * qman_retire_fq - Retires a FQ
1649 : : * @fq: the frame queue object to retire
1650 : : * @flags: FQ flags (as per qman_fq_state) if retirement completes immediately
1651 : : *
1652 : : * Retires the frame queue. This returns zero if it succeeds immediately, +1 if
1653 : : * the retirement was started asynchronously, otherwise it returns negative for
1654 : : * failure. When this function returns zero, @flags is set to indicate whether
1655 : : * the retired FQ is empty and/or whether it has any ORL fragments (to show up
1656 : : * as ERNs). Otherwise the corresponding flags will be known when a subsequent
1657 : : * FQRN message shows up on the portal's message ring.
1658 : : *
1659 : : * NB, if the retirement is asynchronous (the FQ was in the Truly Scheduled or
1660 : : * Active state), the completion will be via the message ring as a FQRN - but
1661 : : * the corresponding callback may occur before this function returns!! Ie. the
1662 : : * caller should be prepared to accept the callback as the function is called,
1663 : : * not only once it has returned.
1664 : : */
1665 : : __rte_internal
1666 : : int qman_retire_fq(struct qman_fq *fq, u32 *flags);
1667 : :
1668 : : /**
1669 : : * qman_oos_fq - Puts a FQ "out of service"
1670 : : * @fq: the frame queue object to be put out-of-service, must be 'retired'
1671 : : *
1672 : : * The frame queue must be retired and empty, and if any order restoration list
1673 : : * was released as ERNs at the time of retirement, they must all be consumed.
1674 : : */
1675 : : __rte_internal
1676 : : int qman_oos_fq(struct qman_fq *fq);
1677 : :
1678 : : /**
1679 : : * qman_fq_flow_control - Set the XON/XOFF state of a FQ
1680 : : * @fq: the frame queue object to be set to XON/XOFF state, must not be 'oos',
1681 : : * or 'retired' or 'parked' state
1682 : : * @xon: boolean to set fq in XON or XOFF state
1683 : : *
1684 : : * The frame should be in Tentatively Scheduled state or Truly Schedule sate,
1685 : : * otherwise the IFSI interrupt will be asserted.
1686 : : */
1687 : : int qman_fq_flow_control(struct qman_fq *fq, int xon);
1688 : :
1689 : : /**
1690 : : * qman_query_fq - Queries FQD fields (via h/w query command)
1691 : : * @fq: the frame queue object to be queried
1692 : : * @fqd: storage for the queried FQD fields
1693 : : */
1694 : : int qman_query_fq(struct qman_fq *fq, struct qm_fqd *fqd);
1695 : :
1696 : : /**
1697 : : * qman_query_fq_has_pkts - Queries non-programmable FQD fields and returns '1'
1698 : : * if packets are in the frame queue. If there are no packets on frame
1699 : : * queue '0' is returned.
1700 : : * @fq: the frame queue object to be queried
1701 : : */
1702 : : int qman_query_fq_has_pkts(struct qman_fq *fq);
1703 : :
1704 : : /**
1705 : : * qman_query_fq_np - Queries non-programmable FQD fields
1706 : : * @fq: the frame queue object to be queried
1707 : : * @np: storage for the queried FQD fields
1708 : : */
1709 : : __rte_internal
1710 : : int qman_query_fq_np(struct qman_fq *fq, struct qm_mcr_queryfq_np *np);
1711 : :
1712 : : /**
1713 : : * qman_query_fq_frmcnt - Queries fq frame count
1714 : : * @fq: the frame queue object to be queried
1715 : : * @frm_cnt: number of frames in the queue
1716 : : */
1717 : : __rte_internal
1718 : : int qman_query_fq_frm_cnt(struct qman_fq *fq, u32 *frm_cnt);
1719 : :
1720 : : /**
1721 : : * qman_query_wq - Queries work queue lengths
1722 : : * @query_dedicated: If non-zero, query length of WQs in the channel dedicated
1723 : : * to this software portal. Otherwise, query length of WQs in a
1724 : : * channel specified in wq.
1725 : : * @wq: storage for the queried WQs lengths. Also specified the channel to
1726 : : * to query if query_dedicated is zero.
1727 : : */
1728 : : int qman_query_wq(u8 query_dedicated, struct qm_mcr_querywq *wq);
1729 : :
1730 : : /**
1731 : : * qman_volatile_dequeue - Issue a volatile dequeue command
1732 : : * @fq: the frame queue object to dequeue from
1733 : : * @flags: a bit-mask of QMAN_VOLATILE_FLAG_*** options
1734 : : * @vdqcr: bit mask of QM_VDQCR_*** options, as per qm_dqrr_vdqcr_set()
1735 : : *
1736 : : * Attempts to lock access to the portal's VDQCR volatile dequeue functionality.
1737 : : * The function will block and sleep if QMAN_VOLATILE_FLAG_WAIT is specified and
1738 : : * the VDQCR is already in use, otherwise returns non-zero for failure. If
1739 : : * QMAN_VOLATILE_FLAG_FINISH is specified, the function will only return once
1740 : : * the VDQCR command has finished executing (ie. once the callback for the last
1741 : : * DQRR entry resulting from the VDQCR command has been called). If not using
1742 : : * the FINISH flag, completion can be determined either by detecting the
1743 : : * presence of the QM_DQRR_STAT_UNSCHEDULED and QM_DQRR_STAT_DQCR_EXPIRED bits
1744 : : * in the "stat" field of the "struct qm_dqrr_entry" passed to the FQ's dequeue
1745 : : * callback, or by waiting for the QMAN_FQ_STATE_VDQCR bit to disappear from the
1746 : : * "flags" retrieved from qman_fq_state().
1747 : : */
1748 : : __rte_internal
1749 : : int qman_volatile_dequeue(struct qman_fq *fq, u32 flags, u32 vdqcr);
1750 : :
1751 : : /**
1752 : : * qman_enqueue - Enqueue a frame to a frame queue
1753 : : * @fq: the frame queue object to enqueue to
1754 : : * @fd: a descriptor of the frame to be enqueued
1755 : : * @flags: bit-mask of QMAN_ENQUEUE_FLAG_*** options
1756 : : *
1757 : : * Fills an entry in the EQCR of portal @qm to enqueue the frame described by
1758 : : * @fd. The descriptor details are copied from @fd to the EQCR entry, the 'pid'
1759 : : * field is ignored. The return value is non-zero on error, such as ring full
1760 : : * (and FLAG_WAIT not specified), congestion avoidance (FLAG_WATCH_CGR
1761 : : * specified), etc. If the ring is full and FLAG_WAIT is specified, this
1762 : : * function will block. If FLAG_INTERRUPT is set, the EQCI bit of the portal
1763 : : * interrupt will assert when Qman consumes the EQCR entry (subject to "status
1764 : : * disable", "enable", and "inhibit" registers). If FLAG_DCA is set, Qman will
1765 : : * perform an implied "discrete consumption acknowledgment" on the dequeue
1766 : : * ring's (DQRR) entry, at the ring index specified by the FLAG_DCA_IDX(x)
1767 : : * macro. (As an alternative to issuing explicit DCA actions on DQRR entries,
1768 : : * this implicit DCA can delay the release of a "held active" frame queue
1769 : : * corresponding to a DQRR entry until Qman consumes the EQCR entry - providing
1770 : : * order-preservation semantics in packet-forwarding scenarios.) If FLAG_DCA is
1771 : : * set, then FLAG_DCA_PARK can also be set to imply that the DQRR consumption
1772 : : * acknowledgment should "park request" the "held active" frame queue. Ie.
1773 : : * when the portal eventually releases that frame queue, it will be left in the
1774 : : * Parked state rather than Tentatively Scheduled or Truly Scheduled. If the
1775 : : * portal is watching congestion groups, the QMAN_ENQUEUE_FLAG_WATCH_CGR flag
1776 : : * is requested, and the FQ is a member of a congestion group, then this
1777 : : * function returns -EAGAIN if the congestion group is currently congested.
1778 : : * Note, this does not eliminate ERNs, as the async interface means we can be
1779 : : * sending enqueue commands to an un-congested FQ that becomes congested before
1780 : : * the enqueue commands are processed, but it does minimise needless thrashing
1781 : : * of an already busy hardware resource by throttling many of the to-be-dropped
1782 : : * enqueues "at the source".
1783 : : */
1784 : : __rte_internal
1785 : : int qman_enqueue(struct qman_fq *fq, const struct qm_fd *fd, u32 flags);
1786 : :
1787 : : __rte_internal
1788 : : int qman_enqueue_multi(struct qman_fq *fq, const struct qm_fd *fd, u32 *flags,
1789 : : int frames_to_send);
1790 : :
1791 : : /**
1792 : : * qman_ern_poll_free - Polling on MR and calling a callback function to free
1793 : : * mbufs when SW ERNs received.
1794 : : */
1795 : : __rte_internal
1796 : : void qman_ern_poll_free(void);
1797 : :
1798 : : /**
1799 : : * qman_ern_register_cb - Register a callback function to free buffers.
1800 : : */
1801 : : __rte_internal
1802 : : void qman_ern_register_cb(qman_cb_free_mbuf cb);
1803 : :
1804 : : /**
1805 : : * qman_enqueue_multi_fq - Enqueue multiple frames to their respective frame
1806 : : * queues.
1807 : : * @fq[]: Array of frame queue objects to enqueue to
1808 : : * @fd: pointer to first descriptor of frame to be enqueued
1809 : : * @frames_to_send: number of frames to be sent.
1810 : : *
1811 : : * This API is similar to qman_enqueue_multi(), but it takes fd which needs
1812 : : * to be processed by different frame queues.
1813 : : */
1814 : : __rte_internal
1815 : : int
1816 : : qman_enqueue_multi_fq(struct qman_fq *fq[], const struct qm_fd *fd,
1817 : : u32 *flags, int frames_to_send);
1818 : :
1819 : : typedef int (*qman_cb_precommit) (void *arg);
1820 : :
1821 : : /**
1822 : : * qman_enqueue_orp - Enqueue a frame to a frame queue using an ORP
1823 : : * @fq: the frame queue object to enqueue to
1824 : : * @fd: a descriptor of the frame to be enqueued
1825 : : * @flags: bit-mask of QMAN_ENQUEUE_FLAG_*** options
1826 : : * @orp: the frame queue object used as an order restoration point.
1827 : : * @orp_seqnum: the sequence number of this frame in the order restoration path
1828 : : *
1829 : : * Similar to qman_enqueue(), but with the addition of an Order Restoration
1830 : : * Point (@orp) and corresponding sequence number (@orp_seqnum) for this
1831 : : * enqueue operation to employ order restoration. Each frame queue object acts
1832 : : * as an Order Definition Point (ODP) by providing each frame dequeued from it
1833 : : * with an incrementing sequence number, this value is generally ignored unless
1834 : : * that sequence of dequeued frames will need order restoration later. Each
1835 : : * frame queue object also encapsulates an Order Restoration Point (ORP), which
1836 : : * is a re-assembly context for re-ordering frames relative to their sequence
1837 : : * numbers as they are enqueued. The ORP does not have to be within the frame
1838 : : * queue that receives the enqueued frame, in fact it is usually the frame
1839 : : * queue from which the frames were originally dequeued. For the purposes of
1840 : : * order restoration, multiple frames (or "fragments") can be enqueued for a
1841 : : * single sequence number by setting the QMAN_ENQUEUE_FLAG_NLIS flag for all
1842 : : * enqueues except the final fragment of a given sequence number. Ordering
1843 : : * between sequence numbers is guaranteed, even if fragments of different
1844 : : * sequence numbers are interlaced with one another. Fragments of the same
1845 : : * sequence number will retain the order in which they are enqueued. If no
1846 : : * enqueue is to performed, QMAN_ENQUEUE_FLAG_HOLE indicates that the given
1847 : : * sequence number is to be "skipped" by the ORP logic (eg. if a frame has been
1848 : : * dropped from a sequence), or QMAN_ENQUEUE_FLAG_NESN indicates that the given
1849 : : * sequence number should become the ORP's "Next Expected Sequence Number".
1850 : : *
1851 : : * Side note: a frame queue object can be used purely as an ORP, without
1852 : : * carrying any frames at all. Care should be taken not to deallocate a frame
1853 : : * queue object that is being actively used as an ORP, as a future allocation
1854 : : * of the frame queue object may start using the internal ORP before the
1855 : : * previous use has finished.
1856 : : */
1857 : : int qman_enqueue_orp(struct qman_fq *fq, const struct qm_fd *fd, u32 flags,
1858 : : struct qman_fq *orp, u16 orp_seqnum);
1859 : :
1860 : : /**
1861 : : * qman_alloc_fqid_range - Allocate a contiguous range of FQIDs
1862 : : * @result: is set by the API to the base FQID of the allocated range
1863 : : * @count: the number of FQIDs required
1864 : : * @align: required alignment of the allocated range
1865 : : * @partial: non-zero if the API can return fewer than @count FQIDs
1866 : : *
1867 : : * Returns the number of frame queues allocated, or a negative error code. If
1868 : : * @partial is non zero, the allocation request may return a smaller range of
1869 : : * FQs than requested (though alignment will be as requested). If @partial is
1870 : : * zero, the return value will either be 'count' or negative.
1871 : : */
1872 : : __rte_internal
1873 : : int qman_alloc_fqid_range(u32 *result, u32 count, u32 align, int partial);
1874 : : static inline int qman_alloc_fqid(u32 *result)
1875 : : {
1876 : 0 : int ret = qman_alloc_fqid_range(result, 1, 0, 0);
1877 : :
1878 [ # # ]: 0 : return (ret > 0) ? 0 : ret;
1879 : : }
1880 : :
1881 : : /**
1882 : : * qman_release_fqid_range - Release the specified range of frame queue IDs
1883 : : * @fqid: the base FQID of the range to deallocate
1884 : : * @count: the number of FQIDs in the range
1885 : : *
1886 : : * This function can also be used to seed the allocator with ranges of FQIDs
1887 : : * that it can subsequently allocate from.
1888 : : */
1889 : : void qman_release_fqid_range(u32 fqid, unsigned int count);
1890 : : static inline void qman_release_fqid(u32 fqid)
1891 : : {
1892 : 0 : qman_release_fqid_range(fqid, 1);
1893 : 0 : }
1894 : :
1895 : : void qman_seed_fqid_range(u32 fqid, unsigned int count);
1896 : :
1897 : : int qman_shutdown_fq(u32 fqid);
1898 : :
1899 : : /**
1900 : : * qman_reserve_fqid_range - Reserve the specified range of frame queue IDs
1901 : : * @fqid: the base FQID of the range to deallocate
1902 : : * @count: the number of FQIDs in the range
1903 : : */
1904 : : __rte_internal
1905 : : int qman_reserve_fqid_range(u32 fqid, unsigned int count);
1906 : : static inline int qman_reserve_fqid(u32 fqid)
1907 : : {
1908 : 0 : return qman_reserve_fqid_range(fqid, 1);
1909 : : }
1910 : :
1911 : : /* Pool-channel management */
1912 : : /**
1913 : : * qman_alloc_pool_range - Allocate a contiguous range of pool-channel IDs
1914 : : * @result: is set by the API to the base pool-channel ID of the allocated range
1915 : : * @count: the number of pool-channel IDs required
1916 : : * @align: required alignment of the allocated range
1917 : : * @partial: non-zero if the API can return fewer than @count
1918 : : *
1919 : : * Returns the number of pool-channel IDs allocated, or a negative error code.
1920 : : * If @partial is non zero, the allocation request may return a smaller range of
1921 : : * than requested (though alignment will be as requested). If @partial is zero,
1922 : : * the return value will either be 'count' or negative.
1923 : : */
1924 : : __rte_internal
1925 : : int qman_alloc_pool_range(u32 *result, u32 count, u32 align, int partial);
1926 : : static inline int qman_alloc_pool(u32 *result)
1927 : : {
1928 : : int ret = qman_alloc_pool_range(result, 1, 0, 0);
1929 : :
1930 : : return (ret > 0) ? 0 : ret;
1931 : : }
1932 : :
1933 : : /**
1934 : : * qman_release_pool_range - Release the specified range of pool-channel IDs
1935 : : * @id: the base pool-channel ID of the range to deallocate
1936 : : * @count: the number of pool-channel IDs in the range
1937 : : */
1938 : : void qman_release_pool_range(u32 id, unsigned int count);
1939 : : static inline void qman_release_pool(u32 id)
1940 : : {
1941 : : qman_release_pool_range(id, 1);
1942 : : }
1943 : :
1944 : : /**
1945 : : * qman_reserve_pool_range - Reserve the specified range of pool-channel IDs
1946 : : * @id: the base pool-channel ID of the range to reserve
1947 : : * @count: the number of pool-channel IDs in the range
1948 : : */
1949 : : int qman_reserve_pool_range(u32 id, unsigned int count);
1950 : : static inline int qman_reserve_pool(u32 id)
1951 : : {
1952 : : return qman_reserve_pool_range(id, 1);
1953 : : }
1954 : :
1955 : : void qman_seed_pool_range(u32 id, unsigned int count);
1956 : :
1957 : : /* CGR management */
1958 : : /* -------------- */
1959 : : /**
1960 : : * qman_create_cgr - Register a congestion group object
1961 : : * @cgr: the 'cgr' object, with fields filled in
1962 : : * @flags: QMAN_CGR_FLAG_* values
1963 : : * @opts: optional state of CGR settings
1964 : : *
1965 : : * Registers this object to receiving congestion entry/exit callbacks on the
1966 : : * portal affine to the cpu portal on which this API is executed. If opts is
1967 : : * NULL then only the callback (cgr->cb) function is registered. If @flags
1968 : : * contains QMAN_CGR_FLAG_USE_INIT, then an init hw command (which will reset
1969 : : * any unspecified parameters) will be used rather than a modify hw hardware
1970 : : * (which only modifies the specified parameters).
1971 : : */
1972 : : __rte_internal
1973 : : int qman_create_cgr(struct qman_cgr *cgr, u32 flags,
1974 : : struct qm_mcc_initcgr *opts);
1975 : :
1976 : : /**
1977 : : * qman_create_cgr_to_dcp - Register a congestion group object to DCP portal
1978 : : * @cgr: the 'cgr' object, with fields filled in
1979 : : * @flags: QMAN_CGR_FLAG_* values
1980 : : * @dcp_portal: the DCP portal to which the cgr object is registered.
1981 : : * @opts: optional state of CGR settings
1982 : : *
1983 : : */
1984 : : int qman_create_cgr_to_dcp(struct qman_cgr *cgr, u32 flags, u16 dcp_portal,
1985 : : struct qm_mcc_initcgr *opts);
1986 : :
1987 : : /**
1988 : : * qman_delete_cgr - Deregisters a congestion group object
1989 : : * @cgr: the 'cgr' object to deregister
1990 : : *
1991 : : * "Unplugs" this CGR object from the portal affine to the cpu on which this API
1992 : : * is executed. This must be executed on the same affine portal on which it was
1993 : : * created.
1994 : : */
1995 : : __rte_internal
1996 : : int qman_delete_cgr(struct qman_cgr *cgr);
1997 : :
1998 : : /**
1999 : : * qman_modify_cgr - Modify CGR fields
2000 : : * @cgr: the 'cgr' object to modify
2001 : : * @flags: QMAN_CGR_FLAG_* values
2002 : : * @opts: the CGR-modification settings
2003 : : *
2004 : : * The @opts parameter comes from the low-level portal API, and can be NULL.
2005 : : * Note that some fields and options within @opts may be ignored or overwritten
2006 : : * by the driver, in particular the 'cgrid' field is ignored (this operation
2007 : : * only affects the given CGR object). If @flags contains
2008 : : * QMAN_CGR_FLAG_USE_INIT, then an init hw command (which will reset any
2009 : : * unspecified parameters) will be used rather than a modify hw hardware (which
2010 : : * only modifies the specified parameters).
2011 : : */
2012 : : __rte_internal
2013 : : int qman_modify_cgr(struct qman_cgr *cgr, u32 flags,
2014 : : struct qm_mcc_initcgr *opts);
2015 : :
2016 : : /**
2017 : : * qman_query_cgr - Queries CGR fields
2018 : : * @cgr: the 'cgr' object to query
2019 : : * @result: storage for the queried congestion group record
2020 : : */
2021 : : int qman_query_cgr(struct qman_cgr *cgr, struct qm_mcr_querycgr *result);
2022 : :
2023 : : /**
2024 : : * qman_query_congestion - Queries the state of all congestion groups
2025 : : * @congestion: storage for the queried state of all congestion groups
2026 : : */
2027 : : int qman_query_congestion(struct qm_mcr_querycongestion *congestion);
2028 : :
2029 : : /**
2030 : : * qman_alloc_cgrid_range - Allocate a contiguous range of CGR IDs
2031 : : * @result: is set by the API to the base CGR ID of the allocated range
2032 : : * @count: the number of CGR IDs required
2033 : : * @align: required alignment of the allocated range
2034 : : * @partial: non-zero if the API can return fewer than @count
2035 : : *
2036 : : * Returns the number of CGR IDs allocated, or a negative error code.
2037 : : * If @partial is non zero, the allocation request may return a smaller range of
2038 : : * than requested (though alignment will be as requested). If @partial is zero,
2039 : : * the return value will either be 'count' or negative.
2040 : : */
2041 : : __rte_internal
2042 : : int qman_alloc_cgrid_range(u32 *result, u32 count, u32 align, int partial);
2043 : : static inline int qman_alloc_cgrid(u32 *result)
2044 : : {
2045 : : int ret = qman_alloc_cgrid_range(result, 1, 0, 0);
2046 : :
2047 : : return (ret > 0) ? 0 : ret;
2048 : : }
2049 : :
2050 : : /**
2051 : : * qman_release_cgrid_range - Release the specified range of CGR IDs
2052 : : * @id: the base CGR ID of the range to deallocate
2053 : : * @count: the number of CGR IDs in the range
2054 : : */
2055 : : __rte_internal
2056 : : void qman_release_cgrid_range(u32 id, unsigned int count);
2057 : : static inline void qman_release_cgrid(u32 id)
2058 : : {
2059 : : qman_release_cgrid_range(id, 1);
2060 : : }
2061 : :
2062 : : /**
2063 : : * qman_reserve_cgrid_range - Reserve the specified range of CGR ID
2064 : : * @id: the base CGR ID of the range to reserve
2065 : : * @count: the number of CGR IDs in the range
2066 : : */
2067 : : int qman_reserve_cgrid_range(u32 id, unsigned int count);
2068 : : static inline int qman_reserve_cgrid(u32 id)
2069 : : {
2070 : : return qman_reserve_cgrid_range(id, 1);
2071 : : }
2072 : :
2073 : : void qman_seed_cgrid_range(u32 id, unsigned int count);
2074 : :
2075 : : /* Helpers */
2076 : : /* ------- */
2077 : : /**
2078 : : * qman_poll_fq_for_init - Check if an FQ has been initialised from OOS
2079 : : * @fqid: the FQID that will be initialised by other s/w
2080 : : *
2081 : : * In many situations, a FQID is provided for communication between s/w
2082 : : * entities, and whilst the consumer is responsible for initialising and
2083 : : * scheduling the FQ, the producer(s) generally create a wrapper FQ object using
2084 : : * and only call qman_enqueue() (no FQ initialisation, scheduling, etc). Ie;
2085 : : * qman_create_fq(..., QMAN_FQ_FLAG_NO_MODIFY, ...);
2086 : : * However, data can not be enqueued to the FQ until it is initialised out of
2087 : : * the OOS state - this function polls for that condition. It is particularly
2088 : : * useful for users of IPC functions - each endpoint's Rx FQ is the other
2089 : : * endpoint's Tx FQ, so each side can initialise and schedule their Rx FQ object
2090 : : * and then use this API on the (NO_MODIFY) Tx FQ object in order to
2091 : : * synchronise. The function returns zero for success, +1 if the FQ is still in
2092 : : * the OOS state, or negative if there was an error.
2093 : : */
2094 : : static inline int qman_poll_fq_for_init(struct qman_fq *fq)
2095 : : {
2096 : : struct qm_mcr_queryfq_np np;
2097 : : int err;
2098 : :
2099 : : err = qman_query_fq_np(fq, &np);
2100 : : if (err)
2101 : : return err;
2102 : : if ((np.state & QM_MCR_NP_STATE_MASK) == QM_MCR_NP_STATE_OOS)
2103 : : return 1;
2104 : : return 0;
2105 : : }
2106 : :
2107 : : #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
2108 : : #define cpu_to_hw_sg(x)
2109 : : #define hw_sg_to_cpu(x)
2110 : : #else
2111 : : #define cpu_to_hw_sg(x) __cpu_to_hw_sg(x)
2112 : : #define hw_sg_to_cpu(x) __hw_sg_to_cpu(x)
2113 : :
2114 : 0 : static inline void __cpu_to_hw_sg(struct qm_sg_entry *sgentry)
2115 : : {
2116 [ # # ]: 0 : sgentry->opaque = cpu_to_be64(sgentry->opaque);
2117 [ # # ]: 0 : sgentry->val = cpu_to_be32(sgentry->val);
2118 [ # # ]: 0 : sgentry->val_off = cpu_to_be16(sgentry->val_off);
2119 : 0 : }
2120 : :
2121 : 0 : static inline void __hw_sg_to_cpu(struct qm_sg_entry *sgentry)
2122 : : {
2123 [ # # ]: 0 : sgentry->opaque = be64_to_cpu(sgentry->opaque);
2124 [ # # ]: 0 : sgentry->val = be32_to_cpu(sgentry->val);
2125 [ # # ]: 0 : sgentry->val_off = be16_to_cpu(sgentry->val_off);
2126 : 0 : }
2127 : : #endif
2128 : :
2129 : : #ifdef __cplusplus
2130 : : }
2131 : : #endif
2132 : :
2133 : : #endif /* __FSL_QMAN_H */
|